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Abstract

Low-order methods require less computing power than classical computational fluid dynamics and can be im-
plemented on a laptop computer, which is needed for engineering tasks. Discrete vortex methods are such low
order methods that can describe the unsteady separated flow around an airfoil. After a presentation of the lead-
ing edge suction parameter discrete vortex method, a modified algorithm is proposed, in order to reduce the
computing cost, and compared with the previous one. Several reference unsteady airfoil motions are discussed
in terms of gain in the computation time with comparisons between the previous scheme and the present one.
The accuracy of the new method is demonstrated through aerodynamic coefficients. The application of the
present discrete vortex method to a transient pitching motion of an airfoil is also presented, in order to under-
stand the leading edge vortex formation, and its implication in terms of lift and drag coefficients. The method
is not limited to unsteady or transient motions but can also simulate the flow around a constant angle of attack
airfoil. In that case, an original method of fast summation of the vortices located far away from the airfoil, allows
a linear dependence of the computation time versus the number of vortices shed, which is a great improvement
over the quadratic dependence observed in the classical discrete vortex methods. The development of the aero-
dynamic coefficients with angle of attack, from values ranging between −10° and 90°, is obtained for a purely
two-dimensional flow. In particular, the shape of the lift coefficient of the airfoil in the fully detached flow region
is established. Comparisons with relevant experimental or computational fluid dynamics data are discussed in
order to grasp the influence of upstream turbulence level and three-dimensional effects in the measured data
in the fully detached flow region.

1. Introduction

The development of computational fluid dynamics, with approaches like discrete eddy simulation, large
eddy simulation or direct numerical simulation, leads to very good accuracy in dynamic flow predictions. How-
ever, these approaches present a heavy computing cost and are inappropriate for laptop computers. That is the
reason why low-order methods are very useful for engineering tasks. Discrete vortex methods are such useful
tools which capture the flow physics by improving the potential theory with discrete vortex shedding [1]. They
provide an intuitive understanding of wake rollup and development of detached flow regions.

The first analytical method for the estimate of lift coefficient of a constant angle of attack, attached flow air-
foil, is the thin airfoil theory developed by Munk [2], Birnbaum [3] and Glauert [4]. The unsteady solution for
the lift of an airfoil undergoing a step change in angle of attack was solved by Wagner [5]. Theodersen [6] devel-
oped a potential flow solution for a flat plate oscillating in pitch and plunge with a small-amplitude harmonic
motion. Unsteady aerodynamic theories and their applications to flapping or aeroelasticity of an airfoil have
been established by Garrick [7] and von Kármán and Sears [8]. These methods are valuable but are based on
the potential theory, and their use is limited to fully attached flows. The adaptation of the thin airfoil theory to
detatched flows emerged in the 1970s with the advances of computer science, with relatively limited power at
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that time. Clements [9], Clements and Maull [10] and Kiya and Arie [11] introduced vortex shedding to model
the flow behind a detached body. Kuwahara [12] and Sarpkaya [13] numerically studied the detached flow be-
hind a flat plate using vortex method and conformal transform. The knowledge of the separation position on
an airfoil allowed Katz [14] to adapt a discrete vortex method for a partially detached airfoil. The development
of more powerful computers in this decade led flow simulations toward another way with the high-order res-
olution of Navier-Stokes equations with closure models. Nevertheless, discrete vortex methods came back in
use recently as alternative low-order methods to classical high-order computational fluid dynamics (CFD), to
address engineering issues with relevant accuracy. Ansari et al. [15], Wang and Eldredge [16], Xia and Mohseni
[17], Hammer et al. [18] and Ramos-García et al. [19] developed discrete vortex methods to model leading edge
vortices in unsteady flows. However, these methods are limited to start and stop criteria for the vortex shedding.
Ramesh et al. [20][21] addressed this issue with the implementation of a leading edge suction parameter. That
criterion allows a wide range of applications for any airfoil geometry, with sharp or rounded leading edges, and
any arbitrary motion. Ramesh et al.[22] proved its robustness and its relative accuracy as long as a leading edge
boundary layer separation occurs. The algorithm is based, for each time step, on iterative schemes to obtain the
circulation of the last generated vortices through a converging time consuming process.

The present paper proposes a modified version of the algorithm of Ramesh et al. [20][21], where the circu-
lations of the last shed vortices are obtained by a linear system in a more efficient way in terms of computing
cost. The theoretical basis of the method is recalled with the new vortex shedding criterion algorithm. It is val-
idated on reference unsteady test cases. The modified algorithm and the initial one are compared in terms of
computation time. An application of the present algorithm to the development of a leading edge vortex on a flat
plate at a large angle of attack is discussed and compared with a classical three-dimensional CFD. Finally, this
computational scheme is applied to a static airfoil in an upstream flow. An original method of fast summation
of the vortices located far away from the airfoil, based on a k -d tree search, is implemented. This far field wake
model leads to a large decrease of computation time with a linear dependence versus the number of vortices
shed. The new algorithm of discrete vortex method with shedding criterion is used to obtain the development
of the two-dimensional aerodynamic coefficients with angle of attack, from attached to fully detached airfoil
flows. A bell-like shape curve for the lift coefficient between 30° and 90° is found. The combined effect of the
upstream turbulence level and airfoil aspect ratio on that region of lift coefficient are discussed.

2. Modified algorithm for the leading edge suction parameter discrete vortex method

2.1. Founding principles

The founding principles and calculation parameters of the leading edge suction parameter discrete vortex
method (LDVM) are similar to the ones presented in Ramesh et al. [20] [21] and reminded in this section. An
airfoil of chord c is placed in an upstream flow of magnitude U∞ with an angle of attack α (t ), the aerodynamic
frame of reference is (X , Z ) with X the direction of U∞ and Z perpendicular to X (figure 1). The flow velocity
components in this frame are U and W . The airfoil frame of reference is (x , z ) with x the chordwise direction
and z perpendicular to x , the velocity component normal to the airfoil is w . A plunging motion h (t ) of the
airfoil along axis Z can be considered.

The time-dependant vorticity distribution along x is written as a Fourier series [4]:

γ (θ , t ) = 2U∞

�

A0 (t )
1+ cosθ

sinθ
+
∞
∑

n=1

An (t )sin nθ

�

(1)

with the new variable θ resulting from the transformation of the chordwise coordinate x such as:

x = c
2 (1− cosθ )

The time-dependant Fourier coefficients are obtained from the velocity field w (t )by enforcing the boundary
condition that the flow must remain tangential to the airfoil:
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Figure 1: Unsteady airfoil frame of reference (x , z ) and aerodynamic frame of reference (X , Z ).

A0(t ) = −
1

π

∫ π

0

w (θ , t )
U∞

dθ (2)

An (t ) =
2

π

∫ π

0

w (θ , t )
U∞

cos nθdθ (3)

The induced velocity normal to the airfoil is calculated from motion kinematics [23]:

w (x , t ) =
∂ η

∂ x
(x , t )

�

∂ ΦT E V

∂ x
(x , t ) +

∂ ΦL E V

∂ x
(x , t ) +U∞ cosα(t ) + ḣ sinα(t )

�

−
∂ ΦT E V

∂ z
(x , t )−

∂ ΦL E V

∂ z
(x , t ) (4)

−U∞ sinα(t )− α̇(t )
�

x − xp

�

+ ḣ cosα(t )

where ΦL E V and ΦT E V are the velocity potentials associated to leading edge and trailing edge vortices, η the
airfoil camberline, xp the pivot location, α̇ the time derivative of the angle of attack corresponding to a pitch
motion and ḣ the airfoil velocity along Z , corresponding to a plunge.

The leading edge suction parameter (LESP) is a non-dimensional measure of the suction at the leading edge
[7]which is equal to the first Fourier coefficient of the vorticity distribution [21]:

LESP (t ) = A0(t )

The critical value LESPc r i t corresponds to the A0 value associated with the angle of attack for which spikes
appear in the negative part of the friction coefficient near the leading edge suction side [21]. It is a measure of
the maximum suction that a given airfoil can bear before separation and is independant of its motion [24], [25].
Parametric studies with experiments and CFD show that there is a motion independant critical value of the LESP,
for a given airfoil and Reynolds number, at which leading edge vortex formation is initiated [22]. Beyond that
value LESPc r i t , the airfoil suction side boundary layer separates from the leading edge, which corresponds to
the release of a leading edge vortex.

At each time step i , a trailing edge vortex (TEV) is shed. A leading edge vortex (LEV) is shed only if the LESP
exceeds its critical value. The circulations associated to these LEV and TEV are obtained from Kelvin’s condition:

ΓB +
i
∑

k=1

ΓT E V ,k +
i
∑

l=1

ΓL E V ,l = 0 (5)
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where ΓB is the bound circulation calculated by integrating the chordwise distribution of vorticity over the
airfoil:

ΓB = U∞cπ
�

A0(t ) +
A1(t )

2

�

(6)

If the LESP becomes lower than its critical value, LEV shedding is stopped. Then, the LESP concept is a single
empirical parameter governing the wall viscous effect and boundary layer detachment.

In the initial LDVM of Ramesh et al. [21], the calculation of the circulation, corresponding to a vortex shed
at each time step i , is obtained by a one or two-dimensional Newton-Raphson iteration, from Katz and Plotkin
[23]. That iterative search, repeated at each time step, is increasing the calculation time of the flow simulation
and can be avoided as presented in section 2.2.

Non-dimensional variables are introduced:

w ∗ = w
U∞

U ∗ =
U

U∞
W ∗ =

W

U∞
X ∗ = X

c Z ∗ = Z
c

Γ * = Γ
U∞c η∗ = ηc ḣ ∗ = ḣ

U∞
α̇∗ = c

U∞
dα
d t

The velocity induced by the k th vortex is described with the model of Vatistas et al. [26] which considers a
finite core radius rc with a solid-body rotation:

U ∗
k =

Γ ∗k
2π

Z ∗−Z ∗k
È

�

�

X ∗−X ∗k
�2
+
�

Z ∗−Z ∗k
�2�2
+ r ∗4c

(7)

W ∗
k = −

Γ ∗k
2π

X ∗−X ∗k
È

�

�

X ∗−X ∗k
�2
+
�

Z ∗−Z ∗k
�2�2
+ r ∗4c

(8)

with:

r ∗c =
rc
c

The non-dimensional time step is the same as the one used by Ramesh et al. [21]:

δt ∗ = δt U∞
c = 0.015

The vortex core radius is taken to be 1.3 times the average spacing between vortices, as in Leonard [27]:

r ∗c =
rc
c = 1.3δt ∗ = 0.02

The location of the new k th vortex is approximated by drawing a vector from the shedding edge to the pre-
vious shed vortex and taking the position at one-third of this distance [15], for instance for the TEV:

X ∗T E V ,k = X ∗T E +
1
3
�

X ∗T E V ,k−1−X ∗T E

�

Z ∗T E V ,k = Z ∗T E +
1
3
�

Z ∗T E V ,k−1−Z ∗T E

�

The advantage of the current approach is that account is taken not only of the wing motion since the last
time step but also of the advection of the previous shed vortex, giving overall a more accurate depiction of the
flow.



2.2 Implementation of the modified algorithm 5

2.2. Implementation of the modified algorithm
First, consider the case with no LEV shedding (|LESP| ≤ |LESPc r i t |). The velocity normal to the airfoil, for

time step i , is:

w ∗(θ ) =
∂ η∗

∂ x ∗
(θ , t )

�

cosα(t ) + ḣ ∗ sinα(t ) +
i−1
∑

k=1

U ∗
T E V ,k cosα(t )

−
i−1
∑

k=1

W ∗
T E V ,k sinα(t ) +

i−1
∑

l=1

U ∗
L E V ,l cosα(t )

−
i−1
∑

l=1

W ∗
L E V ,l sinα(t ) +U ∗

T E V ,i cosα(t )−W ∗
T E V ,i sinα(t )

�

−sinα(t )− α̇∗
�

x ∗ (θ )− x ∗p
�

+ ḣ ∗ cosα(t )−
i−1
∑

k=1

W ∗
T E V ,k cosα(t )

−
i−1
∑

k=1

U ∗
T E V ,k sinα(t )−

i−1
∑

l=1

W ∗
L E V ,l cosα(t )−

i−1
∑

l=1

U ∗
L E V ,l sinα(t )

−W ∗
T E V ,i cosα(t )−U ∗

T E V ,i sinα(t )

which can be rewritten in the following form using (7) and (8):

w ∗(θ ) = T1+ Γ
∗
T E V ,i T2 (9)

Then, combining (2), (3), (6) and (9), the airfoil bound circulation is equal to:

Γ ∗B =

∫ π

0

T1 (θ ) (cosθ −1)dθ + Γ ∗T E V ,i

∫ π

0

T2 (θ ) (cosθ −1)dθ

= I1+ Γ
∗
T E V ,i I2 (10)

From Kelvin’s theorem (5), we get:

Γ ∗T E V ,i = −
I1+

∑i−1
k=1 Γ

∗
T E V ,k +

∑i−1
l=1 Γ

∗
L E V ,l

1+ I2
(11)

For the case where a LEV and a TEV are shed (|LESP|> |LESPc r i t |), the velocity normal to the airfoil, for time
step i , writes:

w ∗(θ ) =
∂ η∗

∂ x ∗
(θ , t )

¨

cosα(t ) + ḣ ∗ sinα(t ) +
i−1
∑

k=1

�

U ∗
T E V ,k cosα(t )

−W ∗
T E V ,k sinα(t )

�

+U ∗
T E V ,i cosα(t )−W ∗

T E V ,i sinα(t )

+U ∗
L E V ,i cosα(t )−W ∗

L E V ,i sinα(t )

+
i−1
∑

l=1

�

U ∗
L E V ,l cosα(t )−W ∗

L E V ,l sinα(t )
�

«

− sinα(t )− α̇∗
�

x ∗ (θ )− x ∗p
�

+ḣ ∗ cosα(t )−
i−1
∑

k=1

�

W ∗
T E V ,k cosα(t ) +U ∗

T E V ,k sinα(t )
�

−
i−1
∑

l=1

�

W ∗
L E V ,l cosα(t ) +U ∗

L E V ,l sinα(t )
�

−W ∗
T E V ,i cosα(t )

−U ∗
T E V ,i sinα(t )−W ∗

L E V ,i cosα(t )−U ∗
L E V ,i sinα(t )
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which reduces to:

w ∗(θ ) = T1+ Γ
∗
T E V ,i T2+ Γ

∗
L E V ,i T3 (12)

The airfoil bound circulation is now:

Γ ∗B =

∫ π

0

T1 (θ ) (cosθ −1)dθ + Γ ∗T E V ,i

∫ π

0

T2 (θ ) (cosθ −1)dθ

+Γ ∗L E V ,i

∫ π

0

T3 (θ ) (cosθ −1)dθ

= I1+ Γ
∗
T E V ,i I2+ Γ

∗
L E V ,i I3 (13)

The first Fourier coefficient is obtained from (2) and (12):

A0(t ) = −
1

π

∫ π

0

T1 (θ )dθ −
Γ ∗T E V ,i

π

∫ π

0

T2 (θ )dθ −
Γ ∗L E V ,i

π

∫ π

0

T3 (θ )dθ

= J1+ Γ
∗
T E V ,i J2+ Γ

∗
L E V ,i J3 (14)

Kelvin’s theorem and the condition on the critical LESP lead to:

Γ ∗B + Γ
∗
T E V ,i + Γ

∗
L E V ,i +

i−1
∑

l=1

Γ ∗T E V ,l +
i−1
∑

l=1

Γ ∗L E V ,l = 0 (15)

A0−LESPc r i t = 0 (16)

which can be written as a linear system depending only on the unknown vortex circulations for time step i :

I1+ Γ
∗
T E V ,i (1+ I2) + Γ

∗
L E V ,i (1+ I3)+

i−1
∑

k=1

Γ ∗T E V ,l +
i−1
∑

l=1

Γ ∗L E V ,l = 0 (17)

J1+ Γ
∗
T E V ,i J2+ Γ

∗
L E V ,i J3−LESPc r i t = 0 (18)

In addition, a condition to avoid the traversing of the camberline by a vortex has been added to the initial
LDVM. Note that this change is marginal since very few vortices are following this path.

The aerodynamic normal and axial forces are obtained from the Fourier coefficients [21]:

FN = ρU∞cπ

�

�

U∞ cosα+ ḣ sinα
�

�

A0+
A1

2

�

+ c

�

3Ȧ0

4
+

Ȧ1

4
+

Ȧ2

8

�

+ρ

∫ c

0

��

∂ ΦT E V

∂ x

�

+
�

∂ ΦL E V

∂ x

��

γ (x , t )d x

�

(19)

FA = ρπc U 2
∞A2

0 (20)

The lift and drag forces are obtained by:

L = FN cosα+ FA sinα (21)

D = FN sinα− FA cosα (22)
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Figure 2: Flow chart of the modified LDVM algorithm.

Similarly for the pitching moment coefficient from the position xr e f :

M = xr e f FN −ρπc 2U∞

§

�

U∞ cosα+ ḣ sinα
�

�

A0

4
+

A1

4
−

A2

8

�

+c

�

7Ȧ0

16
+

3Ȧ1

16
+

Ȧ2

16
−

Ȧ3

64

�

(23)

−ρ
∫ c

0

��

∂ ΦT E V

∂ x

�

+
�

∂ ΦL E V

∂ x

��

γ (x , t ) x d x

�

Then, the aerodynamic coefficients CL , CD are obtained dividing the forces by the upstream flow dynamic
pressure multiplied by the chord and the moment coefficient CM by dividing the quarter chord moment by
the upstream flow dynamic pressure multiplied by the square of the chord. The modified LDVM algorithm is
presented as a flow chart in figure 2. Note that for vortex circulation computation, there is no Newton-Raphson
iterative loop at each time step anymore.
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3. Unsteady airfoil motions

3.1. Validation cases

The present LDVM algorithm is applied to the eight unsteady airfoil motions published in Ramesh et al.
[21], to validate the accuracy of the modified algorithm. In these unsteady airfoil motions, larger values of the
lift coefficients are obtained in comparison with the values obtained for a given angle of attack in steady flow.
These high values can be explained by the effect of the unsteady motion and the resulting added-mass.

Case study 1 is a pitch-hold-return motion generated using the Eldredge function [28] of a SD7003 airfoil for
a Reynolds number of 30000. The amplitude of the pitch is 25◦ with a pivot at the leading edge. The time devel-
opment of angle of attack, LESP, lift, drag and quarter chord pitching moment coefficients are plotted in figure
3. Experimental data correspond to water tunnel measurements of flow visualisations by laser fluorescence and
forces recordings. CFD calculations solve the time-dependant incompressible Navier-Stokes equations using
a finite-volume method. All these results, with the initial LDVM are presented in Ramesh et al. [21], and are
compared with the present modified LDVM algorithm.

Figure 3a shows the dimensionless time development of the angle of attack and LESP. The critical value of
LESP is reached for t ∗ = 2 initiating a LEV shedding that stops at t ∗ = 4.2. Note the different angle of attack for
LEV start (α = 12.9°) and stop (α = 23.9°), evidence of the unsteady effect in the lift coefficient. Similarly, the
LESP is larger at the end of the run than at the begining for the same angle of attack of 0°. The vortex shedding
is intiated from the leading edge at t ∗ = 2 for α = 12.9°. It stops at t ∗ = 4.2 for α = 23.9°, but then the previously
shed LEV are advected on the suction side, reflecting a partial detachment of the airfoil. Thus, a partial suction
side reattachment can be considered in the method.

The lift and drag coefficients development with t ∗ are given in figures 3b and 3c, with comparison between
experiment, CFD, LDVM of Ramesh et al. [21], and present LDVM algorithm. A very good agreement between the
two LDVM algorithms is found. Both LDVM algorithms correctly capture the spikes due to apparent mass effects.
Some differences with experiment and CFD in the amplitude of the coefficients are found in the downstroke for
t ∗ > 4. The small discrepancies observed between present LDVM algorithm and Ramesh’s LDVM lay in the
iterative loops on the LEV and TEV computation present in the latter case. In particular, an exit criterion with
a test on the estimated value of the circulation is necessary, leading to some discrepancies between Ramesh’s
algorithm and the present one, where there is no exit criterion since there is no iterative loop. Note that the
discrepancies between LDVM and CFD are smaller than between CFD and experiment. Figure 3d is the non-
dimensional time evolution of the quarter chord moment coefficient, for which measurements are not available.
The two LDVM algorithms are very close again, and compare reasonably well with CFD except for t ∗ > 4 where
CM is more negative.

A similar agreement is found between the initial LDVM [21] and the present modified algorithm for the other
seven cases, including sinusoidal pitch-plunge motions of period T , which are not presented hereafter for con-
ciseness. We observe a relative agreement between LDVM and experiments or CFD, except for case 3C corre-
sponding to a pitch-plunge motion of a SD7003 airfoil at a Reynolds number of 10000. In that case, the LESP
never reaches its critical value, and no LEV is shed. The experiment and CFD show that a trailing edge boundary
layer separation occurs. As previously observed by Ramesh et al. [21], this phenomenon is not considered in the
LDVM, which explains the poor matching of the method with experiments and CFD.

The comparison of the computing times between the previous LDVM (with an iterative loop for the calcula-
tion of the circulation of each vortex shed), and the present LDVM algorithm (modified method solving a linear
system for these circulations), written in the same programming language, is given in table 1. Computations are
carried out, for the two algorithms, on an Intel Core i5-6300HG CPU 2.30 GHz processor with a RAM of 8 GB. The
modified LDVM shows a gain in computing time generally larger than 2. This improvement on the running time
of LDVM for unsteady flows, corresponding to maximum non-dimensional times of about 10, allows to extend
its application to longer simulations, for transient airfoil motion. Constant angle of attack computations can be
considered, in order to get spectral information such as the vortex shedding frequency of a Von Kàrmàn vortex
street.
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(a) (b)

(c) (d)

Figure 3: Case study 1 (SD7003, R e = 30000): time development of (a ) angle of attack and LESP, (b ) lift coefficient from LDVM, CFD, exper-
iment [21] and present LDVM algorithm, (c ) drag coefficient from LDVM, CFD, experiment [21] and present LDVM algorithm, (d ) pitching
moment coefficient about the quarter chord from LDVM, CFD [21] and present LDVM algorithm.

Case study Airfoil R e LESPc r i t t ∗ma x t /T Time ratio

1 SD7003 30000 0.18 7 - 2.15

2 SD7003 100000 0.14 8 - 2.46

3A SD7003 10000 0.21 - 1 1.69

3B SD7003 10000 0.21 - 1 1.89

3C SD7003 10000 0.21 - 1 2.08

4 NACA 0015 1100 0.19 - 1 2.41

5A Flat plate 1000 0.11 5 - 2.69

5B Flat plate 1000 0.11 9 - 2.70

Table 1: Comparison of the time ratios between the LDVM with an iterative loop on the vortex shedding circulation computation [21] and
the present LDVM algorithm where the vortex shedding circulation computation is obtained by a linear system.
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3.2. LEV formation in transient motion

The use of LDVM for longer simulation times is developed in this section, on a fast transient airfoil motion
followed by a constant angle of attack position, with an application to steady flow characterization. This case
corresponds to the transient pitch up motion of a flat plate of chord c with 7% thickness and sharp edges, from
0° to a given value of the angle of attack α, with a rotational speed of 120◦ per non-dimensional unit time, fol-
lowed by a frozen position at the terminal α [29]. The center of rotation is the center of the plate. Note that
the mass-added effects, corresponding to the motion of the plate, are not considered below, since the flow is
discussed from t ∗ = 1, after the plate increase in angle of attack. Comparison of the two-dimensional LDVM is
done with three-dimensional large eddy simulations combined with the immersed boundary technique, con-
sidering a wing of span 2c [29]. This simulation presents the flow field and lift and drag coefficients for Reynolds
numbers equal to 440, 2000, 6000 and 21000. The present LDVM algorithm corresponds to R e = 1000, because
the value of LESPc r i t is available only for that value of the Reynolds number in Ramesh et al. [21] (table 1), for
a 2.3%-thick flat plate and with semi-circular leading and trailing edges. However, these closest conditions to
CFD simulations are taken for comparison.

Figure 4 is the non-dimensional time development of the LEV for a terminal angle of attack of 25° from t * = 1
to 3. Figures 4a to 4c show the vorticity obtained by three-dimensional CFD [29] at R e = 440 and figures 4d to
4f are the vortical centers calculated by the modified LDVM algorithm at R e = 1000 for the same dimensionless
times. Comparing the LEV creation for Reynolds numbers between 440 and 21000, Zhang and Schlüter [29]
proved that the LEV is a coherent structure undisturbed by small-scale turbulence at R e = 440. These authors
also evidenced the influence of turbulence on the attenuation of the LEV with a positive effect on higher lift
generation, and found an optimum at R e = 2000 where the viscosity effect is sufficiently low as not to disturb
the creation of the LEV, but sufficiently large to avoid the generation of small scale turbulence. The modified
LDVM presents a relatively good agreement with three-dimensional CFD. For t * = 1, the LEV creation is well
captured, while its chordwise extension is about 2c /3 (figure 4d) compared to c /2 for CFD (figure 4a). Similarly
for t * = 2, the LEV covers completely the airfoil suction side (figure 4e) and only 90% in CFD (figure 4b). The slight
overprediction of the LEV extension by LDVM versus CFD could be caused by a phase difference in the vortex
formation and evolution, occurring at a slightly earlier time in LDVM. However, this point is not supported by
the lift coefficient time development in figure 5. Another explanation for the slight overprediction of the LEV
extension could be a thinner plate in LDVM than in CFD, or could be due to three-dimensional effects, not
considered in that purely two-dimensional method but taken into account in CFD. For t * = 3, the LEV is about
to shed the wall while a TEV is forming (figure 4f). The same TEV feature is observed in CFD, with a large negative
vorticity region around the trailing edge (figure 4c).

The time evolution of the lift coefficient is plotted in figure 5, exhibiting a relative agreement between the
three-dimensional CFD at R e = 440 and present LDVM algorithm at R e = 1000. In particular, the same period
is found, corresponding to vortex shedding. However, a periodic feature with two peaks in the amplitude of the
lift coefficient is observed in CFD, evidence of the difference of the LEV and TEV influence on the airfoil, which
is not identified in LDVM. This disymmetry tends to decrease in CFD for t ∗ ≥ 30.

A measure of the aerodynamic efficiency of the LEV is the maximum lift to drag ratio presented in figure 6 for
different Reynolds numbers, where each point is associated with a value of the angle of attack. The maximum
lift to drag ratios are obtained in the transient passing of the LEV, from its creation to its downstream shedding
in the wake. The curves for 1000 ≤ R e ≤ 20000 are close, including the present LDVM results. At R e = 440 the
viscosity creates additional drag not permitting the LEV to be fully developped, resulting in lower lift to drag
ratios. The relatively good fitting between three-dimensional CFD and two-dimensional LDVM could indicate
that the LEV formation is essentially two-dimensional.

4. Constant angle of attack airfoil

4.1. Vortex merging

One of the main disavantages of discrete vortex methods is the increase of computing time as the square of
the number n of shedding centers, O

�

n 2
�

. In order to decrease this computing time for long simulations, for
instance to get analysis of the shedding frequency, and keep the advantages of low-order models, it is necessary
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(a) (b) (c)

(d) (e) (f)

Figure 4: Vortex shedding over a flat plate pitched up to α= 25° in a flow: spanwise vorticity contours (continuous color scale between -400
in blue and 400 in red) from CFD [29] for R e = 440 at (a ) t ∗ = 1, (b ) t ∗ = 2, (c ) t ∗ = 3 and vortex circulation (negative in blue, close to 0 in
green and positive in red) from present LDVM algorithm for R e = 1000 at (d ) t ∗ = 1, (e ) t ∗ = 2, ( f ) t ∗ = 3.

Figure 5: Comparison of the time development of the lift coefficient for a flat plate after a fast transient rotation with an angle of attack
α= 25° obtained by three-dimensional CFD at R e = 440 [29] and present LDVM algorithm at R e = 1000.
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Figure 6: Maximum lift versus drag coefficient for a flat plate after a fast transient rotation at different Reynolds numbers for a three-
dimensional CFD [29] compared with the present LDVM results.

to reduce the number of vortices without altering much the flow description. A deletion of the centers that exit
the field of interest could be employed, but Kelvin’s circulation theorem is no longer enforced for each time step,
resulting in sharp peaks changes in the time development of the aerodynamic coefficients. Another option is a
model reduction based on a vortex concentration. Vortex shedding from the leading edge is modeled by a shear
layer that comprises few discrete vortices, concentrated in a single vortex whose strength varies with time [30].
Fast summation methods are alternative options to reduce the computation time to O

�

n log n
�

[31] or to O (n )
[32]. Such methods, proposed first by Sarpkaya [13], consist in a clustering of all the individual vortex centers
situated downstream of a given distance downstream of the airfoil. A review of the different vortex merging
methods with a discussion on their computing cost performance is available in [33]. Vortex clustering presents
the advantage of not altering much the vortices near the airfoil, whose contribution is more important to aero-
dynamic forces, and to conserve the global circulation null. However, the way the distant vortices are removed or
coalesced into an equivalent single vortex is a relevant issue. In the present study, an automatic vortex clustering
method based on a k -d tree of neighboring vortices is adopted [34], which is an original application in LDVM or
other potential vortex methods. For the agglomeration of vortices, several methods have been tested to travel
across the tree in search for the neighbors. The most efficient method is to start with the closest vortices from
the airfoil. Note that the method only takes into account the distances between vortices. Their values are used
to compute the barycenter of the equivalent vortex. Once merged, the sum of the circulations of the clustered
vortices is assigned to the new vortex. The relative error on aerodynamic coefficients is defined, for instance
for the lift coefficient, by εC ,L =

�

CL ,c l u s t −CL

�

/CL , with CL ,c l u s t the value for vortex clustering downstream of a
given distance X /c , and CL the value without clustering. A study of the influence of the vortex merging distance
showed that the relative error of the averaged aerodynamic coefficients, with and without clustering, decrease
to values lower than 2% if the merging distance is X /c > 3 (figure 7). However, in order to keep an accurate
flowfield description in the airfoil near wake, without increasing much the computing time, a merging distance
X /c = 4 is chosen. An example is provided for a modified LDVM simulation of the flow around a SD7003 air-
foil for an angle of attack of 45° at R e = 20700 and time t * = 15 (figure 8). Without vortex merging, the airfoil
suction side is completely detached and the downstream flow presents an established shedding of alternatively
counter-rotating and rotating vortical structures (figure 8a). The simulation for the very same conditions but
with vortex clustering beyond X /c = 4 is given in figure 8b. Note that the morphology of the airfoil suction side
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Figure 7: Relative error of the lift, drag and quarter-chord pitching moment coefficients versus clustering distance (Xc l u s t /c ) from the airfoil,
for an angle of attack of 30◦.

LEV and the last TEV and LEV produced near the airfoil is almost unchanged from the simulation without vortex
merging. The LEV previously shed and located between 5 ≤ X /c ≤ 6, consisting in a hundred of vortical cen-
ters, is reduced into four vortices, and similarly for t he part of the TEV downstream of X /c = 4. Every cluster of
vortices, as small as it is, is merged into at least one center. The global circulation associated with the vortical
centers is conserved in the concentrated vortices. This method of vortex combination is used to save computing
time and to produce a simpler picture of the vortex street.

The time development of the lift coefficient without and with vortex clustering is shown for this configuraton
in figure 9. The same values are obtained, with little discrepancy in some valleys where small oscillations are
present. Note the physical accuracy of the vortex merging, since the same periodicity in lift coefficient variations
is found with or without clustering, reflecting the large vortical structures shedding downstream of the detached
flow airfoil for the large value of the angle of attack. Similar comments are valid for the drag and quarter chord
moment coefficients which are not presented hereafter.

The comparison of computing times for the LDVM without and with vortex centers clustering beyond X /c =
4 is presented in figure 10 in linear and semi-log scales. If there is no noticeable difference in the computing time
up to t ∗ = 15, there is a rapid increase for longer simulations. Without vortex merging, the computing time is
increasing as the square of the number of vortices, as expected for this detached configuration with a continuous
LEV and TEV shedding. With the present vortex merging method, a linear increase of the computing time with
t ∗ is found, allowing reasonable simulation times to perform flow spectral analysis.

4.2. Aerodynamic coefficients

The lift coefficient evolution with angle of attack depends on many parameters such as airfoil shape, Reynolds
number, wing aspect ratio, upstream flow turbulence level, wing surface roughness, ... Despite this, it is possi-
ble to identify three regions in this curve (figure 11), listed with increasing values of the angle of attack between
0° and 90° [35]. Region 1 is the linear part of CL (α), with a slope depending on the wing aspect ratio AR , and
corresponding to attached flow conditions. Region 2 is the stall region, with a jump of lift coefficient depending
on the nature of flow separation (a rapid and sharp decrease for a leading edge stall or a smoother curve for
a trailing edge flow detachment). Region 3 is associated with a completely detached suction side, its bell-like
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(a)

(b)

Figure 8: Flow development with vortex circulation (negative in blue, close to 0 in green and positive in red) around a SD7003 airfoil for a
45° angle of attack at R e = 20700 and time t * = 15: (a ) without vortex merging, (b ) with vortex merging for X /c > 4.
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Figure 9: Time development of the lift coefficient around a SD7003 airfoil for a 45° angle of attack at R e = 20700 obtained from the present
LDVM algorithm without and with vortex clustering donwnstream of X /c = 4.

shape is slightly dependant on the Reynolds number with a maximum lift coefficient around α ∼ 40°− 50°. Al-
though different airfoils are compared, the main discrepancies concern the zero-lift angle of attack αL=0, which
depends on the camber, and the stall. To get rid of the camber effect, figure 11 presents the lift coefficients plot-
ted versus α−αL=0 and we focus on the regions where the flow is attached (region 1, typically α> 15°) and fully
detached (region 3, typically α ? 25◦). For each value of the angle of attack, LDVM computations consider a
non-dimensional simulation time t ∗ = 225 starting from rest. To eliminate the influence of the flow establish-
ment and provide converged values, the mean coefficients are obtained by a time average between t ∗ = 45 and
225.

The measurements of Devinant et al. [35] present the lift coefficient for a thick NACA 654−421 airfoil with an
aspect ratio of 3.67 at a Reynolds number of 2×105 and an upstream turbulence level of 0.5% (table 2). They are
plotted for comparison with the present LDVM results for data obtained in the range 0° to 90° (figure 11). Note
that in the experiment, the two-dimensional flow is obtained placing the airfoil between two parallel panels. A
good agreement is found with the slope of the thin airfoil theory for the attached flow region 1 between −4° and
11◦, confirming the two-dimensional flow features. However, after the stall, the flow turns three-dimensional
and the accurate parameter for lift coefficient correction is the wing aspect ratio, 3.67 in this set-up, leading to
relatively low lift coefficients around 1 for α = 45°. Measurements of Faure et al. [37] around a thinner NACA
23012 airfoil and a lower Reynolds number of 5.83×104 with an aspect ratio of 9 but without parallel end-plates
show a lower slope of the curve in the attached region between 0° and 10°. After the stall drop, the lift coefficient
increases and reaches a level close to the one observed in Devinant et al. [35]. For both of these experiments,
region 3 corresponds to fully detached flows where two-dimensional features are no longer present. However,
Laitone [36] conducted measurements around a 5% camber circular arc airfoil with a very low upstream turbu-
lence level of 0.02%. He showed the change in the lift coefficient curves in region 3 for aspect ratios shifting from
4 to 6. Although his measurements are limited to a maximum angle of attack of 27°, the trend of convergence to-
ward the measurements of Devinant et al. [35] for AR = 4, and toward the present LDVM algorithm for AR = 6, is
well established. This LDVM result is also confirmed by the two-dimensional CFD of Hétru [38] around a NACA
23 012 airfoil, obtained with a finite-volume Detached Eddy Simulation using CD-ADAPCO Star-CCM+. In these
simulations, the two-dimensional flow feature is approached using a mesh width equal to 0.02 airfoil chord. In
addition to describing well the attached flow region 1 and the stall, the simulation is converging toward LDVM
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(a)

(b)

Figure 10: Computing time on a laptop configuration for the LDVM simulation of the flow around a 45° angle of attack SD7003 airfoil, with
and without vortex clustering by a k -d tree search of neighboring vortices: (a ) linear scale, (b ) semi-log scale.
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Figure 11: Lift coefficient versus corrected angle of attackα−αL=0 obtained for a NACA 654−421 airfoil with AR = 3.67 at R e = 2×105 with an
upstream turbulence level of 0.5% [35], for a 5% camber circular arc airfoil with AR = 4 and 6 at R e = 20700 with an upstream turbulence level
of 0.02% [36], for a NACA 23 012 airfoil with AR = 9 at R e = 5.83×104 with an upstream turbulence level of 0.38% [37], for a two-dimensional
CFD around a NACA 23 012 airfoil at R e = 3×106 [38], and from the present two-dimensional LDVM around a SD7003 airfoil at R e = 20700.
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Reference Airfoil R e AR T u (%) Configuration

Devinant et al. (2002) [35] NACA 654−421 2×105 3.67 0.5 Experiment

Laitone (1997) [36] 5% camber circular arc 20700 4 0.02 Experiment

Laitone (1997) [36] 5% camber circular arc 20700 6 0.02 Experiment

Faure et al. (2017) [37] NACA 23 012 5.83×104 9 0.38 Experiment

Hétru (2015) [38] NACA 23 012 3×106 - - CFD

Present study SD 7003 20700 - - LDVM

Table 2: Comparison of the experimental or numerical parameters for references of figure 11: airfoil, Reynolds number, aspect ratio, up-
stream flow turbulence level T u and configuration.

results for an angle of attack of 30°. Then, the relatively large lift coefficients obtained with the present LDVM
algorithm in region 3, with CL ,ma x = 2.37, can be related to the purely two-dimensional nature of the method.

The lift, drag and moment coefficients versus angle of attack are presented in figure 12 for a SD7003 airfoil.
Measurements of Selig and Guglielmo [39] are carried out on a wing with an aspect ratio of 2.8 for a Reynolds
number of 105, CFD of Lian and Shyy [40] are given for similar conditions and a Reynolds number of 6×104 and
the present LDVM results are obtained for R e = 20700. The accordance is perfect on lift and drag coefficients
for the attached flow region. The stall angle is 13° for present LDVM algorithm and 12° for the measurements of
the flow around a 5% camber of a circular arc [36] at the same Reynolds number, which justifies the comparison
between these two airfoils. Measurements and CFD for a SD7003 airfoil present the stall angle of 10.5° and 11°
respectively (figure 12). These discrepancies are attributed to three-dimensional effects due to a small aspect
ratio of 2.8 in the experiment and CFD. Note the rapid drop in CL for the LDVM, while measurements and CFD
present a decrease in the slope of the curve CL (α) before the stall point. This is typical of LDVM which considers
a leading edge separation of the boundary layer without partial detachment and reattachment on the airfoil
suction side. For large values of the angle of attack, the lift coefficient presents a bell-like shape with a maximum
aroundα∼ 40°−50° and a value close to zero forα= 90°. A good agreement is found with CFD results of Lian and
Shyy [40] for the drag coefficient. This coefficient increases proportionally to the square of the angle of attack
up to α = 50° where it reaches an almost constant value. The quarter-chord pitching moment decreases from
α= 15° to 45° and gets a constant value.

5. Conclusion

A modified algorithm of the LDVM developed by Ramesh et al. [21] is proposed, leading to a smaller simula-
tion time, reduced by a factor of about 2 for the unsteady airfoil motion test cases. The results are very similar to
those obtained with the initial algorithm, and match reasonably well with available experiments or CFD as long
as an initial leading edge boundary layer separation occurs. This modified LDVM is used for the study of the de-
velopment of the LEV in the transient motion of a flat plate, corresponding to a pitch up motion to a frozen angle
of attack. The flow features and the maximum lift versus drag coefficients, associated with a LEV formation, are
in good agreement with three-dimensional CFD data obtained by Zhang and Schlütler [29]. This reflects the fact
that the LEV formation is mostly two-dimensionnal. The present modified LDVM algorithm is also applied to
constant angle of attack SD7003 airfoil flow simulations at R e = 20700. An original amalgamation method of
the vortical centers situated sufficiently downstream of the airfoil is implemented in order to reduce the com-
puting cost. Then, the simulation time is brought down from a dependence as the square of the number of shed
vortices to a linear dependence. This reduction in computing power allows a wide range of application of the
method for completely detached flows and permits spectral analysis. An important result is that the shape of
the time-averaged lift coefficient after the stall, typical of aspect ratios larger than 5, is found in the present sim-
ulation. This was previously observed by Laitone [36] up to 28° but the present simulations show that the shape
of the curve can be extended up to 90°. In addition, the aerodynamic coefficients fit relatively well with available
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Figure 12: Lift, drag and quarter-chord moment coefficients versus angle of attack for a SD7003 airfoil obtained from experiment [39] at
R e = 105, from CFD [40] at R e = 6×104 and from present LDVM algorithm at R e = 20700.

measurements or high-order CFD for a SD7003 airfoil. The use of the LDVM is not limited to global coefficients
prediction, but it is also of great interest for accurate two-dimensional flow features description. Improvements
of the method, including a partial airfoil suction side detachment model, could be considered to provide a better
description of the aerodynamic coefficents around the stall.
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