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Abstract The aerodynamic characteristics of two neighboring airfoils are
greatly different from those of a single airfoil, both for attached or detached
flows conditions. In order to study the features of a two-airfoil arrangement
with variations in the angle of attack and distances between the airfoils, and
considering possible flow detachments, an adaptation of a discrete-time vortex
numerical method is conducted. It is based on the fact that for a given airfoil
and Reynolds number, there is a critical value of the leading-edge suction pa-
rameter. If its instantaneous value exceeds the critical value, vortex shedding
occurs at the leading edge, representing the shear layer associated with flow
detachment. In addition, Kelvin’s theorem imposes for each time step, that the
total circulation equals zero. In the present paper, Kelvin’s theorem is extended
for a two-airfoil arrangement with the initial starting flow condition. That nu-
merical method allows to obtain instantaneous flow features and airfoil forces
for different arrangements. Validation of the method is made for unsteady mo-
tions of oscillating and plunging airfoils. For constant angle-of-attack airfoils,
comparisons with available experimental data are presented in terms of flow
field and aerodynamic coefficients. In particular, in order to show the possible
improvement of the two-airfoil arrangement performance, the averaged lift co-
efficient is compared with the single airfoil configuration. A discussion on the
lift efficiency ratio with previous measurements and time development of the
flow field, permits to understand the mechanisms contributing to a positive
interaction.
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Centre de Recherche de l’École de l’Air, École de l’Air, F-13661 Salon-de-Provence, France
e-mail: thierry.faure@ecole-air.fr



2 Faure, Dumas, Montagnier

1 Introduction

Unsteady aerodynamics of airfoils in incompressible flow, operated on mod-
erate Reynolds numbers in the range 104 to 105, has gained in importance,
for unmanned air vehicles (UAV) and micro air vehicles (MAV) applications
(Mueller and DeLaurier (2003)). Fixed-wing MAV need to fly at conditions
close to the stall point, and post-stall flight would occur during maneuvers.
Hence, delaying stall and improving performance for large values of the an-
gle of attack is necessary. To do so, two-wing arrangements are proposed as
a means of generating large enough lift coefficient and delaying stall by con-
trolling the flow. The present investigation focuses on the understanding of
two-dimensional effects using a discrete vortex method. The interaction be-
tween two airfoils is a key mechanism of flow control, with wakes and vortex
shedding effects.

The first analytical method for the estimate of lift coefficient of a constant
angle of attack, attached flow airfoil, is the thin airfoil theory developed by
Munk (1922), Birnbaum (1923) and Glauert (1926). The unsteady solution for
the lift of an airfoil undergoing a step change in angle of attack was solved
by Wagner (1925). Theodorsen (1935) developed a potential flow solution for
a flat plate oscillating in pitch and plunge with a small-amplitude harmonic
motion. Unsteady aerodynamic theories and their applications to flapping or
aeroelasticity of an airfoil have been established by Garrick (1937) and von
Kármán and Sears (1938). These methods are valuable but are based on the
potential theory, and their use is limited to fully attached flows. The adap-
tation of the thin airfoil theory to detached flows emerges in the 1970s with
the advances of computer science, with relative limited power at that time.
Clements (1973), Clements and Maull (1975) and Kiya and Arie (1977) intro-
duced vortex shedding to model the flow behind a detached body. Kuwahara
(1973) and Sarpkaya (1975) numerically studied the detached flow behind
a flat plate using a vortex method and a conformal transform. The knowl-
edge of the separation position on an airfoil allows Katz (1981) to adapt a
discrete vortex method for a partially detached airfoil. The development of
more powerful computers in this decade, leads flow simulation toward another
way with the high-order resolution of Navier-Stokes equations with closure
models, and approaches like Discrete Eddy Simulation (DES), Large Eddy
Simulation (LES) or Direct Numerical Simulation (DNS). However, these ap-
proaches present heavy computing costs and require long simulation time. For
this reason, discrete vortex methods came back in use recently as alterna-
tive low-order methods to classical high-order Computational Fluid Dynamics
(CFD), to address engineering issues with relevant accuracy. A method for the
prediction of continuous vortex shedding around a general sharp-edged solid
body, moving in an inviscid fluid at Reynolds numbers between 100 and 1000
has been developed by Michelin and Smith (2009). Ansari et al. (2006), Wang
and Eldredge (2013), Xia and Mohseni (2013) and Hammer et al. (2014) de-
veloped discrete vortex methods to model leading edge vortices in unsteady
flows. However, these methods are limited to start and stop criteria for the vor-
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tex shedding. Ramesh et al. (2013b) and Ramesh et al. (2014) addressed this
issue with the implementation of a leading edge suction parameter. That cri-
terion allows a wide range of applications for any airfoil geometry, with sharp
or rounded leading edges, and any arbitrary motion. It proves its robustness
and its relative accuracy as long as a leading edge boundary layer separation
occurs and is fully validated at Reynolds numbers of 3 × 104 and 105. The
Leading-edge-suction-parameter Discrete Vortex Method (LDVM) algorithm
is based, for each time step, on iterative schemes to obtain the amplitude of
the last generated vortices through a converging time consuming process. A
modified algorithm has been implemented by Faure et al. (2019), where the
Newton-Raphson iteration search is replace by a linear system, providing a
reduction of the simulation time by a factor of 2.

In the present paper, the modified version of the algorithm of Ramesh
et al. (2013b) and Ramesh et al. (2014) and developed by Faure et al. (2019),
is adapted to a two-airfoil arrangement where Kelvin’s theorem is modified
using the initial condition. That numerical method allows to obtain instanta-
neous flow features and forces for different airfoil arrangements. The validation
is made for unsteady airfoil motions using the results of numerical simulations
for tandem flapping wings (Broering and Lian (2012)) and experiments of
an oscillating forefoil and a static hindfoil positioned in its wake (Rival et al.
(2010)). The LDVM for a two-airfoil arrangement is then compared with avail-
able experimental data varying the angle of attack for a fixed distance beween
the airfoils (Faure et al. (2017)) or for a stagger and gap defined relatively to
the upstream flow direction (Jones et al. (2015)). In particular, the averaged
lift coefficient of the two-airfoil arrangement is compared with the averaged
lift coefficient of the single airfoil in order to show a possible improvement of
the performance for particular parameters.

2 LDVM adaptation for a two-airfoil arrangement

The analysis of multiply-connected problems like the present one, has been
extensively studied for attached flows (Crowdy and Marshall (2006), Crowdy
et al. (2007), Crowdy and Surana (2007)). It permits the exact calculation
of potential flows around multi-body configurations (Crowdy (2010)) using
the multiply-connected Schwarz-Christoffel formula (Crowdy (2007), Crowdy
(2008)).

The founding principles and calculation parameters of the leading edge
suction parameter modulated discrete vortex method (LDVM) are similar to
Ramesh et al. (2013b) and Ramesh et al. (2014). An airfoil is placed in an
upstream flow of magnitude U∞ with an angle of attack α, the aerodynamic
frame of reference is (X,Z) with X the direction of U∞ and Z perpendicular to
X (figure 1). The velocity components in this frame are U and W . The airfoil
frame of reference is (x, z) with x the chord-wise direction and z perpendicular
to x, the velocity component normal to the airfoil is w. A plunging motion ḣ
of the airfoil along axis Z can be considered.
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Fig. 1: Unsteady airfoil frame of reference (x, z) and aerodynamic frame of
reference (X,Z).

For a two-airfoil arrangement and possible detached flow conditions, the
LDVM needs to be adapted. In that case, the upstream airfoil, or forefoil, is
referred as airfoil 1 and the downstream airfoil, or hindfoil, as airfoil 2. The
wakes and shedding point vortices created by these airfoils, and the potential
effects between them, modify the flow and the aerodynamic performance of
the arrangement.

Each airfoil is modeled by a time-dependent vorticity distribution γj (θ, t)
taken to be a Fourier series (Glauert (1926)), with j = {1, 2}:

γj (θ, t) = 2U∞

[
A0,j (t)

1 + cos θ

sin θ
+

∞∑
n=1

An,j (t) sinnθ

]
(1)

with, for each airfoil, the new variable θ resulting from the transformation
of the chord-wise coordinate x such as:

x =
c

2
(1− cos θ) (2)

The time-dependent Fourier coefficients are obtained from the velocity field
wj(t) by enforcing the boundary condition that the flow must remain tangen-
tial to the airfoil:

A0,j(t) = − 1

π

� π

0

wj(θ, t)

U∞
dθ (3)

An,j(t) =
2

π

� π

0

wj(θ, t)

U∞
cosnθdθ (4)

The induced velocity normal to each airfoil is calculated from motion kine-
matics (Katz and Plotkin (2001)), with j = {1, 2}, k = {1, 2} and k 6= j:
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wj =
∂ηj
∂x

[
∂ΦTEV,j
∂x

+
∂ΦLEV,j
∂x

+
∂ΦTEV,k
∂x

+
∂ΦLEV,k
∂x

+
∂ΦB,k
∂x

+U∞ cosα+ ḣj sinα
]
− ∂ΦTEV,j

∂z
− ∂ΦLEV,j

∂z

−∂ΦTEV,k
∂z

− ∂ΦLEV,k
∂z

− ∂ΦB,k
∂z

− U∞ sinα

−α̇j (x− xp,j) + ḣj cosα

(5)

where ΦLEV,j , ΦLEV,k and ΦTEV,j , ΦTEV,k are the velocity potentials as-
sociated to leading edge and trailing edge vortices (LEV and TEV), ΦB,k is
the velocity potential associated to vorticity distribution along the kth airfoil,
ηj the airfoil camber-line, xp,j the pivot location, α̇j the time derivative of

the angle of attack corresponding to a pitch motion of the jth airfoil and ḣj
its velocity along Z, corresponding to a plunge. The airfoil bound circulation
is calculated by integrating the chord-wise distribution of vorticity over the
airfoil:

ΓB,j (t) = U∞cπ

[
A0,j (t) +

A1,j (t)

2

]
(6)

For each airfoil, the leading edge suction parameter (LESP) is a non-
dimensional measure of the suction at the leading edge (Garrick (1937)) which
is equal to the first Fourier coefficient of the vorticity distribution (Ramesh
et al. (2014)), with j = {1, 2}:

LESPj (t) = A0,j(t) (7)

The critical value LESPcrit,j is a measure of the maximum suction that
a given airfoil can bear before separation and is independent of its motion
(Ramesh et al. (2011), Ramesh (2013), Ramesh et al. (2018)). Beyond the
value LESPcrit,j , the airfoil suction side boundary layer separates from the
leading edge, which corresponds to the release of a leading edge vortex. If
LESPj becomes lower than its critical value, LEV shedding is stopped. Then,
the LESP concept is a single empirical parameter governing the wall viscous
effect and boundary layer detachment.

Non-dimensional variables are introduced:

w∗ = w
U∞

U∗ =
U

U∞
W ∗ =

W

U∞
X∗ = X

c Z∗ = Z
c

Γ * = Γ
U∞c

η∗ =
η
c ḣ∗ = ḣ

U∞
α̇∗ = dα

dt∗

(8)

The velocity induced by the kth vortex is described with the model of
Vatistas et al. (1991) which considers a finite core radius rc with a solid-body
rotation:
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U∗k =
Γ ∗k
2π

Z∗ − Z∗k√[
(X∗ −X∗k)

2
+ (Z∗ − Z∗k)

2
]2

+ r∗4c

W ∗k = −Γ
∗
k

2π
X∗ −X∗k√[

(X∗ −X∗k)
2

+ (Z∗ − Z∗k)
2
]2

+ r∗4c

(9)

with:

r∗c =
rc
c

(10)

The non-dimensional time step is the same as the one used by Ramesh
et al. (2014):

δt∗ =
δtU∞
c

= 0.015 (11)

The vortex core radius is taken to be 1.3 times the average spacing between
vortices as proposed by Leonard (1980):

r∗c =
rc
c

= 1.3δt∗ = 0.02 (12)

The location of the new ith vortex is approximated by drawing a vector
from the shedding edge to the previous shed vortex and taking the position
at one-third this distance (Ansari et al. (2006)), for instance for the TEV and
the jth airfoil:

X∗TEV,j,i = X∗TE,j + 1
3

(
X∗TEV,j,i−1 −X∗TE,j

)
Z∗TEV,j,i = Z∗TE,j + 1

3

(
Z∗TEV,j,i−1 − Z∗TE,j

) (13)

where X∗TE,j , Z
∗
TE,j are the trailing edge coordinates of the jth airfoil in

the aerodynamic frame of reference. The advantage of the current approach
is that account is taken not only of the possible wing motion since the last
time-step but also of the advection of the previous shed vortex, giving overall
a more accurate depiction of the flow.

Consider a time step i where LEV and TEV are emitted from both airfoils.
The velocity component tangential to the upstream and downstream airfoils
are, with j = {1, 2}, k = {1, 2} and k 6= j:

w∗j (θ) = Tj (θ) +
∑2
l=1

[
Γ ∗TEV,l,iTj,l,TEV,i (θ) + Γ ∗LEV,l,iTj,l,LEV,i (θ)

]
+Γ ∗B,kTB,k (θ)

(14)
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the coefficients are respectively, with j = {1, 2}:

Tj (θ) =
[(∑i−1

l=1 U
∗
TEV,j,l +

∑i−1
m=1 U

∗
LEV,j,m + 1

)
cosα

−
(∑i−1

l=1 W
∗
TEV,j,l +

∑i−1
m=1W

∗
LEV,j,m

)
sinα

] ∂η∗j
∂x∗

− sinα− α̇∗
(
x∗j − x∗j,p

)
+ ḣj

∗
cosα

−
∑i−1
l=1 W

∗
TEV,j,l cosα+

∑i−1
m=1 U

∗
LEV,j,m sinα

(15)

with for j = {1, 2} and l = {1, 2}:

Tj,l,TEV,i (θ) = U∗TEV,l,i

(
∂ηj
∂x

cosα− sinα

)
+W ∗TEV,l,i

(
− cosα− ∂ηj

∂x
sinα

)
Tj,l,LEV,i (θ) = U∗LEV,l,i

(
∂ηj
∂x

cosα− sinα

)
+W ∗LEV,l,i

(
− cosα− ∂ηj

∂x
sinα

)
(16)

and for j = {1, 2}, k = {1, 2} and k 6= j:

TB,k (θ) = U∗B,k

(
∂ηj
∂x

cosα− sinα

)
+W ∗B,k

(
− cosα− ∂ηj

∂x
sinα

) (17)

The bound circulation for each airfoil,with j = {1, 2}, k = {1, 2} and k 6= j,
is given by:

Γ ∗B,j =
� π
0
w∗j (θ) (cos θ − 1) dθ

= Ij + Γ ∗TEV,j,iIj,j,TEV + Γ ∗LEV,j,iIjjj,LEV
+Γ ∗TEV,k,iIj,k,TEV + Γ ∗LEV,k,iIj,k,LEV + Γ ∗B,kIB,k

(18)

with the coefficients, for j = {1, 2}, k = {1, 2} and k 6= j:

Ij =
� π
0
Tj (θ) (cos θ − 1) dθ

Ij,k,TEV =
� π
0
Tj,k,TEV (θ) (cos θ − 1) dθ

Ij,k,LEV =
� π
0
Tj,k,LEV (θ) (cos θ − 1) dθ

IB,k =
� π
0
TB,k (θ) (cos θ − 1) dθ

(19)

The first Glauert coefficient for each airfoil, with j = {1, 2}, k = {1, 2} and
k 6= j, is then:

A0,j = − 1
π
� π
0
w∗j (θ) dθ

= Jj + Γ ∗TEV,j,iJj,j,TEV + Γ ∗LEV,j,iJj,j,LEV
+Γ ∗TEV,k,iJj,k,TEV + Γ ∗LEV,k,iJj,k,LEV + Γ ∗B,kJB,k

(20)

with for j = {1, 2}, k = {1, 2} and k 6= j:
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Jj = − 1
π
� π
0
Tj (θ) dθ

Jj,k,TEV = − 1
π
� π
0
Tj,k,TEV (θ) dθ

Jj,k,LEV = − 1
π
� π
0
Tj,k,LEV (θ) dθ

JB,k = − 1
π
� π
0
TB,k (θ) dθ

(21)

Comparing the LDVM algorithm with the single-airfoil arrangement, for
each time step, circulations associated to the TEV and LEV are created for
the second airfoil, providing one or two new variables, depending on if the flow
is detached or attached. If both airfoils are detached, there are four unknown
new variables at each time step. The available equations are the LESP criteria
for airfoil 1 and 2 and Kelvin’s theorem, meaning three equations for four
unknown parameters:

A0,1 − LESPcrit,1 = 0 (22)

A0,2 − LESPcrit,2 = 0 (23)

Γ ∗B,1 + Γ ∗B,2 + Γ ∗TEV,1,i + Γ ∗LEV,1,i + Γ ∗TEV,2,i + Γ ∗LEV,2,i
+
∑i−1
k=1 Γ

∗
TEV,1,k +

∑i−1
l=1 Γ

∗
LEV,1,l

+
∑i−1
m=1 Γ

∗
TEV,2,m +

∑i−1
n=1 Γ

∗
LEV,2,n = 0

(24)

where the indices 1 and 2 are relative to airfoils 1 and 2. There is scant
literature on the treatment of Kelvin’s circulation theorem for multiple airfoils.
This issue has been addressed by Lighthill in the treatment of the Weis-Fogh
mechanism developed for hovering animal flight (Weis-Fogh (1973), Lighthill
(1973)).

To close the problem, an additional condition is necessary. As LDVM sim-
ulations are starting with airfoils at rest, the initial condition is used, which is
the circulation around contours C1 and C2 including each airfoil equals zero
(figure 2a), resulting in a division in two parts of Kelvin’s equation (24). Since
the circulation around the time development of a given contour, made of the
same fluid elements, is kept for the following times (figure 2b), equation (24)
of the previous system is replaced by:

Γ ∗B,1 + Γ ∗TEV,1,i + Γ ∗LEV,1,i +

i−1∑
k=1

Γ ∗TEV,1,k +

i−1∑
l=1

Γ ∗LEV,1,l = 0 (25)

Γ ∗B,2 + Γ ∗TEV,2,i + Γ ∗LEV,2,i +

i−1∑
m=1

Γ ∗TEV,2,m +

i−1∑
n=1

Γ ∗LEV,2,n = 0 (26)

Thus, the circulation generation is decoupled from airfoils 1 and 2 in the
two-airfoil arrangement by the initial condition, but the global flow and the
advection of the point vortices are calculated with all the circulations present
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at a given time. The continuously deforming contours could present quite
exotic shapes, but point vortices are generally organized in clusters. Figure 2b
is idealized, since a vortex cluster generated from airfoil 1 can be advected in
the vicinity of airfoil 2. Then, this vortex cluster has a strong influence on the
velocity w2 normal to this second airfoil in the calculation of the coefficient
A0,2, but is considered in Kelvin’s theorem only for its originating airfoil 1,
in equation (25). In order to prevent a point vortex originating from airfoil 1
crossing the camber-line of airfoil 2, a condition avoiding this case has been
implemented. This condition also avoids contour C1 to cross airfoil 2 camber
line.

The linear system of four unknown parameters for four equations is solved
without iterative scheme. The resolution of this linear system is then per-
formed in the same way as for a single airfoil (Faure et al. (2019)), without any
Newton-Raphson iterative scheme as in the initial LDVM algorithm (Ramesh
et al. (2014)). The velocity field used for the advection is obtained considering
the influence of the bound airfoil circulations and all the shed vortices.

One of the main drawbacks of discrete vortex methods is the increase of
computing time as the square of the number n of shedding centers, O

(
n2
)
. In

order to decrease this computing time and keep the advantages of low-order
models, it is necessary to reduce the number of point vortices without alter-
ing much the flow description. A deletion of the centers that exit the field of
interest could be employed, but Kelvin’s circulation theorem is not enforced
anymore for each time step, resulting in sharp peaks changes in the time devel-
opment of the aerodynamic coefficients. Another option is a model reduction
based on a point vortex concentration. Point vortex shedding from the leading
edge is modeled by a shear layer that comprises few discrete point vortices,
concentrated in a single point vortex whose strength varies with time (Suresh-
Babu et al. (2016)). Fast summation methods are alternative options to reduce
the computation time to O (n log n) (Barnes and Hut (1986)) or to O (n) (Car-
rier et al. (1988)). Such methods, proposed first by Sarpkaya (1975), consist in
a clustering of all the individual vortex centers situated downstream of a given
distance downstream from the airfoil. It presents the advantage of not altering
much the vortices near the airfoil, whose contribution is more important to
aerodynamic forces, and to conserve the global circulation null. Recently, an
aggregation procedure has been developed and utilized, in which vortex ele-
ments are coalesced at each time step, whatever their relative distance from
the airfoil (Darakananda et al. (2018), Darakananda and Eldredge (2019)).

However, the way the distant point vortices are removed or coalesced into
an equivalent single point vortex is a relevant issue. In the present study,
an automatic vortex clustering method based on a k-d tree of neighboring
vortices is adopted (Bentley (1975)), as proposed in Faure et al. (2019), only
for point vortices located four chords downstream of the aft airfoil. For the
agglomeration of point vortices, several methods have been tested to travel
across the tree in search for the neighbors. The most efficient method is to
start with the closest point vortices from the airfoil. Note that the method
only takes into account the distances between point vortices. Their values are
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used to compute the barycenter of the equivalent vortex center. Once merged,
the sum of the circulations of the clustered point vortices is assigned to the
new point vortex.

Note that the vortex amalgamation procedure is realized four chord down-
stream of airfoil 2, which is a distance sufficient to avoid any noticeable in-
fluence on the forces coefficients exerted on this airfoil (Faure et al. (2019)).
In addition, that procedure does not violate Kelvin’s theorem for each airfoil,
even if two vortices, originating from different airfoils, are merged together.
For instance, if a point vortex Γ ∗LEV,1,m created at time step m from airfoil 1 is
merged with a point vortex Γ ∗LEV,2,n created at time step n from airfoil 2, the
sum of their circulations Γ ∗LEV,1,m + Γ ∗LEV,2,n is affected to their barycenter.
However, in Kelvin’s theorem for each airfoil, Γ ∗LEV,1,m is always in equation

(25) in the sum
∑i−1
k=1 Γ

∗
LEV,1,k while Γ ∗LEV,2,n is always in equation (26) in

the sum
∑i−1
l=1 Γ

∗
LEV,1,l. In fact, as the algorithm is time-step developing, it

is sufficient to keep the value of the sum of point vortices of previous step in
both equations.

A direct resolution of the linear system (equations (22), (23), (25), (26))
provides circulations Γ ∗TEV,j,i, Γ

∗
LEV,j,i without any Newton-Raphson iterative

loop as in Ramesh et al. (2014). In addition, a condition to avoid the traversing
of the camber-line by a vortex has been added to the initial LDVM. Note that
for a single airfoil arrangement, this change is marginal since very few vortices
are following this path. However, that condition is important for a two-airfoil
arrangement, if vortices are shedding from airfoil 1 on airfoil 2. Furthermore,
as each airfoil is modelled by a vortex line, extending from its leading edge
to its trailing edge, if a point vortex is advected by the flow and impacts
the geometrical leading edge, it would be repealed or deviated because of the
additional condition avoiding shedding vortices crossing airfoils camber-lines.
A shedding cluster of point vortices can be advected toward the aft airfoil
leading edge, even if none of the point vortices is exactly positioned on the
leading edge. Two neighbor point vortices will repeal or attract each other,
depending on their circulation, but never melt, unless a clustering is imposed
by the algorithm for vortices located far away from the airfoils.

The aerodynamic normal and axial forces are obtained from the Fourier
coefficients (Ramesh et al. (2014)) with j = {1, 2}, k = {1, 2} and k 6= j:

FN,j = ρU∞cπ

{(
U∞ cosα+ ḣj sinα

)(
A0,j +

A1,j
2

)
+c

(
3Ȧ0,j

4 +
Ȧ1,j

4 +
Ȧ2,j

8

)
+ρ

� c
0

[(
∂ΦTEV,j
∂x

)
+

(
∂ΦLEV,j
∂x

)
+

(
∂ΦTEV,k
∂x

)
+

(
∂ΦLEV,k
∂x

)]
γj (x, t) dx

}
(27)

FA,j = ρπcU2
∞A

2
0,j (28)
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(a)

(b)

Fig. 2: Kelvin’s theorem for a two-airfoil arrangement: (a) initial condition
t = 0 at rest and circulation around contours C1 and C2, (b) once the upstream
flow is established, conservation of circulations around the evolution C ′1 and
C ′2 of contours C1 and C2 for t > 0.

The lift and drag forces are obtained by:

Lj = FN,j cosα+ FA,j sinα
Dj = FN,j sinα− FA,j cosα

(29)

Similarly for the pitching moment coefficient from the position xref,j :
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Mj = xref,jFN,j − ρπc2U∞
{(

U∞ cosα+ ḣj sinα
)(

A0,j

4

+
A1,j

4 − A2,j

8

)
+ c

(
7Ȧ0,j

16 +
3Ȧ1,j

16 +
Ȧ2,j

16 −
Ȧ3,j

64

)
−ρ

� c
0

[(
∂ΦTEV,j
∂x

)
+

(
∂ΦLEV,j
∂x

)
+

(
∂ΦTEV,k
∂x

)
+

(
∂ΦLEV,k
∂x

)]
γj (x, t)xdx

}
(30)

3 Validation of the two-airfoil LDVM for unsteady motions

For a single airfoil, the LDVM has been extensively compared with available
data in Ramesh et al. (2014) and Faure et al. (2019), for both steady or moving
airfoils. The two-airfoil LDVM is compared to CFD simulations of Broering
and Lian (2012) for flapping tandem flat plates at a Reynolds number of 5000
and to measurements by particle image velocimetry (PIV) of Rival et al. (2010)
for a SD7003 airfoil flapping in front of a downstream airfoil at a Reynolds
number of 30, 000.

3.1 Tandem flapping wings

The flapping kinematics used in these CFD for two airfoils of equal chord c is
a combination of sinusoidal pitching and plunging (Broering and Lian (2012)),
with the pitch axis at the quarter-chord from each airfoil leading edge:

α (t) = α0 cos (2πft+ φα + φh) + αave
h (t) = h0 cos (2πft+ φh)

(31)

where α (t) is the pitching angle, h (t) the plunging position, t the time, f =
1/T = 0.3 Hz the flapping frequency, α0 = 20◦ the pitching amplitude, h0 =
0.5c the plunging amplitude, φα = 90◦ the pitching phase, φh the plunging
phase, and αave = 5◦ the average angle of attack. In the present case, φh = 0◦

for the forefoil and 90◦ for the hindfoil. The Reynolds number based on the
chord of each airfoil is 5000. This motion and Reynolds number are inspired
from a dragonfly kinematics with a combination of pitching and plunging, on a
tandem airfoil configuration. Figure 3 presents the flow and vortex generation
for different spacings ∆X∗ = ∆X/c between 0.1 and 1, at 68% cycle time.
The distance between the airfoils affect the timing of the vortex interactions.
During the upstroke, the hindfoil passes through a TEV of the forefoil. Figure
4 presents the vortices at 89% cycle time just before stroke reversal and after
the vortex interaction has occurred. A LEV with negative circulation is formed
on the lower side of the hindfoil. Comparisons between the vorticity obtained
from CFD (first row) and the circulation centers from LDVM (second row)
are very similar for the forefoil downstroke (t/T = 0.68) as well as for the
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Fig. 3: Comparison between CFD from Broering and Lian (2012) (first row,
vorticity, arrows indicate the stroke direction) and present LDVM (second
row, circulation negative in blue, close to 0 in green and positive in red) at
68% cycle time for different spacings: (a) CFD single airfoil, (b) CFD tandem
airfoil, spacing 0.25, (c) CFD tandem airfoil, spacing 0.5, (d) CFD tandem
airfoil, spacing 1, (e) LDVM single airfoil, (f) LDVM tandem airfoil, spacing
0.25, (g) LDVM tandem airfoil, spacing 0.5, (h) LDVM tandem airfoil, spacing
1.

upstroke (t/T = 0.89). Figure 5 presents the comparison between CFD and
LDVM for a period of flapping and different spacings ∆X∗ = ∆X/c between
0.1 and 1. A relatively good agreement is found between CFD and LDVM
with similar shapes for the variation of lift and drag coefficients over a period.
The accordance is excellent for a spacing of 1, but for lower spacings some
discrepancies are observed between CFD and LDVM, with larger peak values
for the LDVM.

3.2 Oscillating forefoil and static hindfoil

An experiment consisting on an oscillating forefoil and a static hindfoil posi-
tioned at x/c = 2 in its wake is realized with PIV measurements (Rival et al.
(2010)). This configuration is referred to as a wave propeller developped by
Schmidt and conceived to extract vortical energy from the forefoil to generate
thrust on the hindfoil (Schmidt (1965)). Both foils are SD7003 airfoils which
demonstrate relatively good performance at transitional Reynolds numbers.
The forefoil plunging motion is a simple harmonic motion:

h (t) = h0 cos (2πft) (32)

where h (t) is the plunging position, h0 = 0.5c the plunging amplitude
and f = 1/T = 2.5 Hz the frequency. The forefoil angle of attack is 8◦.
The hindfoil is placed with a spacing of one chord downstream of the forefoil



14 Faure, Dumas, Montagnier

Fig. 4: Comparison between CFD from Broering and Lian (2012) (first row,
vorticity, arrows indicate the stroke direction) and present LDVM (second
row, circulation negative in blue, close to 0 in green and positive in red) at
89% cycle time for different spacings: (a) CFD single airfoil, (b) CFD tandem
airfoil, spacing 0.25, (c) CFD tandem airfoil, spacing 0.5, (d) CFD tandem
airfoil, spacing 1, (e) LDVM single airfoil, (f) LDVM tandem airfoil, spacing
0.25, (g) LDVM tandem airfoil, spacing 0.5, (h) LDVM tandem airfoil, spacing
1.

trailing edge, with a vertical offset h∗ = h/c = 0.5 and an angle of attack of 8◦.
The Reynolds number based on the chord of each airfoil is 30, 000. Forces are
obtained from Particle Image Velocimetry (PIV) measurements by a control
volume analysis, which allows time resolution decomposing a period of the
forefoil into 12 phases per cycle. Figure 6 presents the comparison between
vorticity measured from PIV fields and LDVM simulations for three different
relative times of the forefoil cycle. Note in PIV fields that there is no velocity
measurements in the airfoil pressure side because this region is a shadow zone
of the PIV laser. For t/T = 0.417 a first forefoil LEV ejected downstream
passes close over the hinfoil pressure side, and creates a leading edge separation
identified in the LDVM field (figure 6b) but not in the PIV because this region
is masked (figure 6a). As the hindfoil is near its stall angle, a vortex-induced
separation occurs when the forefoil TEV passes close over the hindfoil leading
edge (figure 6c and 6d). The forefoil flow is attached but the LEV and TEV
previously generated are advected over the hindfoil (figures 6e and 6f). A good
agreement is observed between flow features of vorticity fields measured by PIV
and clusters of vortical centers obtained from LDVM. Figure 7 presents, for
a period of the forefoil flapping, the comparison between PIV and LDVM for
the global lift CL,G and drag CD,G coefficients:

CL,G = CL,fore + CL,hind
CD,G = CD,fore + CD,hind

(33)
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(a)

(b)

Fig. 5: Comparison between CFD and LDVM for the tandem flat plates kine-
matics and various spacings ∆X∗ between 0.1 and 1: (a) lift coefficent, (b)
drag coefficient.

where CL,fore and CD,fore are the forefoil coefficients and CL,hind and
CD,hind the hindfoil coefficients. A relative agreement is found between the
measurements and LDVM, since the force estimate by the control volume
analysis does not consider the airfoil pressure side flow, which is a masked
zone in the PIV velocity fields.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Comparison of blade-vortex interaction for h/c = −0.5 and αH =
8◦ from experiments of Rival et al. (2010) (left column) and LDVM (right
column): (a) experiment t/T = 0.417, (b) LDVM t/T = 0.417, (c) experiment
t/T = 0.5, (d) LDVM t/T = 0.5, (e) experiment t/T = 0.583, (f) LDVM
t/T = 0.583.

4 LDVM for static two-airfoil arrangement

4.1 Fixed distance in the two-airfoil arrangement

A static two-airfoil arrangement is considered hereafter. In this section, for
comparison with experimental data (Faure et al. (2017)), the distances (`x,`z)
are counted in the airfoil frame of reference (x, z) with the chord of airfoil 2 half
the chord c of airfoil 1 (figure 8). The distance between the forefoil trailing
edge and the hindfoil leading edge is constant when the angle of attack is
changed.

LDVM simulations flow fields are compared with PIV measurements of
Faure et al. (2017) in figure 9, showing the vortex shedding for a given time
for a Reynolds number Re = 5.83× 104 and distances `x/c = 3 and `z/c = 1.
For experiments, where the flow is three-dimensional (figures 9a and 9b), the
quantity obtained from PIV velocity fields is the Γ2 criterion (negative in blue
and positive in red) which is a normalized kinetic moment useful to identify
vortical structures (Graftieaux et al. (2001)). The gray region below each air-
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(a)

(b)

Fig. 7: Comparison between the global aerodynamic coefficients obtained from
PIV measurements and combined control volumes (Rival et al. (2010)) and
LDVM for an oscillatique forefoil and a staic hindfoil with an angle of attack
of 8◦: (a) lift coefficient, (b) drag coefficient.

Fig. 8: Two-airfoil arrangement for experimental data from Faure et al. (2017)
with chord-wise distance `x and distance normal to the chord `z.
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foil corresponds to a shadow zone where PIV measurements are impossible.
In LDVM simulations (figures 9c and 9d), each LEV or TEV center is repre-
sented by a color dot in blue (respectively red) for a clockwise (respectively
counter-clockwise) circulation or in green for circulation close to zero. These
two time instants have been chosen arbitrary because of the closeness of the
shedding vortices, corresponding to clusters of several LEV or TEV centers.
Note that the angles of attack and Reynolds numbers are similar, but the air-
foils are different (NACA 23012 for experiment and SD7003 for LDVM), which
can explain some local discrepancies. That choice is driven by the fact that
these two airfoils are cambered airfoils and because the variation of the criti-
cal LESP with Reynolds number has been published in Ramesh et al. (2013a).
The comparison of the position of shedding vortex structures, for angles of
attack α = 15° and α = 30°, where both airfoils suction sides are detached,
is discussed. For α = 15° (figure 9a), the forefoil suction side is completely
detached from the leading edge, a LEV cluster is observed near X/c = 1.2
and 2.2 and TEV clusters around 1.8 and 2.9 with some negative vorticity
below that latter vortex. The LEV are advected and interact with the hindfoil
leading edge, while the TEV path is below the hindfoil pressure side. Some
discrepancies are observed in LDVM simulation for α = 15° (figure 9c) with
a LEV cluster near X/c = 0.8 and TEV clusters located at 1.6 and 3, and a
similar behavior around the hindfoil where vortex clusters are advected down-
stream. Note that the TEV cluster located at X/c = 3.8 cannot be observed
in the experiment because this region is in the shadow zone. However, most of
the vortex clusters shed from the forefoil are passing near the hindfoil pressure
side. For α = 30°, the similarity between experiments (figure 9b) and LDVM
(figure 9d) is much better with the same shape of the leading edge shear layer
and a shedding LEV around X/c = 2 and TEV clusters around X/c = 1.2 and
2.9. For that angle of attack, the shedding cluster of TEV are advected near
the leading edge of the hindfoil. Then, a relative agreement is found on time
development of the flow between experimental results and LDVM simulations
for both of these angles of attack.

In order to get the time-averaged development of the aerodynamic coeffi-
cients with angle of attack, comparing the single-airfoil arrangement with the
two-airfoil arrangement, let us define the monoplane lift coefficient as (Jones
et al. (2015)):

CL,m =
S1CL,1,s + S2CL,2,s

S1 + S2
(34)

where CL,1,s and CL,2,s are the lift coefficients for the hindfoil and forefoil
in a single-airfoil arrangement and S1 and S2 their respective wing areas. Note
for the present two-dimensional setup S1 = c and S2 = c/2. For the two-airfoil
arrangement, the total lift coefficient is:

CL,t =
S1CL,1 + S2CL,2

S1 + S2
(35)
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(a) (b)

(c) (d)

Fig. 9: Vortex shedding for the two-airfoil arrangement with `x/c = 3 and
`z/c = 1 for experimental values of the Γ2 criterion (negative in blue and
positive in red, Faure et al. (2017)) obtained at an angle of attack: (a) α =
15°, (b) α = 30°, instantaneous LDVM simulations of the circulation centers
(negative in blue, close to 0 in green and positive in red) at an angle of attack:
(c) α = 15°, (d) α = 30°.

where CL,1 and CL,2 are the lift coefficients for the hindfoil and forefoil in
the two-airfoil arrangement. Drag and quarter-chord pitching moment coeffi-
cients are defined in the same way.

The monoplane and total aerodynamic coefficients versus angle of attack
are presented in figures 10 to 12 for NACA 23 012 airfoils with `x/c = 3 and
`z/c = 1 at a Reynolds number of 5.83 × 104 and upstream turbulence level
of 0.38% (Faure et al. (2017)), and for present LDVM simulations with the
same parameters but SD7003 airfoils. In addition, aerodynamic coefficients
are provided for a single-airfoil Wortmann FX63− 137 at a Reynolds number
of 8.5 × 104 and upstream turbulence level of 0.08% (Scharpf and Mueller
(1992)) and lift coefficient is given for a single-airfoil 5% camber circular arc
with AR = 4 and 6, a Reynolds number of 2.07×104 and upstream turbulence
level of 0.02% (Laitone (1997)). In the attached flow region, between −9° and
7°, there is a linear dependence of the lift coefficient and a good agreement
between experiments (Faure et al. (2017), Scharpf and Mueller (1992)) and
LDVM simulations (figure 10). The slope is lower for experimental results of
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Laitone (1997), because of a smaller aspect ratio. Note the stall angles observed
in NACA 23 012 airfoils experiments around 7°, below the value of 14° observed
in Scharpf and Mueller (1992), probably due to a different airfoil shape but also
different wing surface roughness or wind tunnel upstream turbulence levels.
LDVM simulations show a stall point around 17°, but no important drop in the
lift coefficient is observed after this value. For much larger angle of attack, the
lift coefficient is increasing again. The experimental curve for the Wortmann
FX63 − 137 airfoil (Scharpf and Mueller (1992)) is close to the monoplace
lift coefficent up to the stall angle of 14◦. In addition, it has been shown,
for angles of attack greater than 25◦ and for a very low upstream turbulence
level of 0.02% (Laitone (1997)), that a change is observed in the lift coefficient
curves for aspect ratios shifting from 4 to 6. This behavior is confirmed in
figure 10 where the measurements of Laitone (1997) tend to converge toward
the monoplane lift coefficient of LDVM simulations, corresponding to a null
upstream flow turbulence level and an infinite wing aspect ratio (Faure et al.
(2019)). There is no noticeable difference between the monoplane and total lift
coefficient for the NACA 23 012 airfoils in the attached flow region between
−9° and 7°. However, the two-airfoil arrangement produces experimentally
a slightly larger lift coefficient between 8° and 13°, which is not the case for
LDVM simulations where the single-airfoil arrangement produces larger values
of lift coefficient.

Thus, the advantage of the two-airfoil arrangement seems to be strongly
dependent on the range of angle of attack considered, but also the choice of
the airfoils and the distance between them. The agreement between LDVM
results and experiments is good for the drag coefficient (figure 11) and the
quarter-chord pitching moment coefficient (figure 12), even if little dispersion
is observed between the plots for angles of attack larger than 20°.

4.2 Parametric study with stagger and gap in the two-airfoil arrangement

In this setting (Scharpf and Mueller (1992), Jones et al. (2015)) the distances
are counted in the upstream flow frame of reference (X,Z), defining a gap
∆X/c and a stagger ∆Z/c between two airfoils of equal chord c (figure 13).
The distance between the forefoil trailing edge and the hindfoil leading edge
is modified with the angle of attack. In present LDVM simulations, for com-
parisons with these experimental data, a SD7003 airfoil is considered again,
because the development of LESPcrit with Reynolds number is available. In
order to find favorable parameters of the two-airfoil arrangement, a paramet-
ric study of flow features and lift coefficient is conducted varying the airfoil
stagger ∆X/c and gap ∆Z/c. The LDVM simulations for SD7003 airfoils are
compared with experimental results for flat plates (Jones et al. (2015)) at the
same Reynolds number of 105. Several LDVM simulations have been conducted
varying the stagger between 0 and 1.5 and the gap between −1.5 and 1.5 (fig-
ures 14 and 15). The monoplane lift coefficient, corresponding to a single-airfoil
arrangement, is represented by black squares while the other curves correspond
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Fig. 10: Lift coefficient versus angle of attack for the single-airfoil arrangement
from measurements of Scharpf and Mueller (1992) around a Wortmann FX63−
137 airfoil and a Reynolds number of 8.5×104, from measurements of Laitone
(1997) around a 5% camber circular arc airfoil with AR = 4 and 6 and a
Reynolds number of 2.07×104, and for the two-airfoil arrangement with `x/c =
3 and `z/c = 1 from measurements of Faure et al. (2017) around NACA 23 012
airfoils and a Reynolds number of 5.83× 104 and for LDVM simulations with
`x/c = 3 and `z/c = 1 around SD7003 airfoils and a Reynolds number of
5.83× 104.

to various values of the gap ∆Z/c, for a given value of the stagger ∆X/c. For
seek of clarity, negative and positive gaps are plotted in different figures. In
addition, monoplane and total lift coefficients for flat plates are given (figure
14c) from Jones et al. (2015) and for Wortmann FX63 − 137 airfoils (figure
15d) at a different Reynolds number of 8.5 × 104 from Scharpf and Mueller
(1992). Note that the LDVM curve for the monoplane lift coefficient is slightly
different from the one presented in figure 10 because of the change in Reynolds
number.

There is less scatter in the curves for small values of the stagger ∆X/c.
For the linear part of the lift coefficient versus angle of attack, corresponding
roughly to α < 10° and a slope of 2π rad−1 , little discrepancy is observed
between the curves, but the monoplane lift coefficient is better. Note, in that
region, that the total lift coefficient for the two-airfoil arrangement presents
values closer to the ones for the single-airfoil arrangement for larger absolute
values of the gap ∆Z/c. A gain in lift coefficient for the two-airfoil arrange-
ment is found between 15° and 35° for particular values of the gap. A maximum
gain of 37% is reached for ∆X/c = 0 and ∆Z/c between 0.5 and 0.75 (figure
14a). For the angles of attack larger than 35°, the monoplane lift coefficient
is always larger. Comparing these LDVM simulations with measurements of
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Fig. 11: Drag coefficient versus angle of attack for the single-airfoil arrange-
ment from measurements of Scharpf and Mueller (1992) around a Wortmann
FX63− 137 airfoil and a Reynolds number of 8.5× 104 and for the two-airfoil
arrangement with `x/c = 3 and `z/c = 1 from measurements of Faure et al.
(2017) around NACA 23 012 airfoils and a Reynolds number of 5.83× 104 and
for LDVM simulations with `x/c = 3 and `z/c = 1 around SD7003 airfoils and
a Reynolds number of 5.83× 104.

Fig. 12: Quarter-chord pitching moment coefficient versus angle of attack
for the single-airfoil arrangement from measurements of Scharpf and Mueller
(1992) around a Wortmann FX63 − 137 airfoil and a Reynolds number of
8.5 × 104 and for LDVM simulations with `x/c = 3 and `z/c = 1 around
SD7003 airfoils and a Reynolds number of 5.83× 104.
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Fig. 13: Two-airfoil arrangement for experimental data from Scharpf and
Mueller (1992) and Jones et al. (2015) with stagger ∆X and gap ∆Z in the
upstream flow direction.

Jones et al. (2015) on flat plates arrangements at the same Reynolds number
and for ∆X/c = 0.5, a lower slope of the attached flow region is observed be-
tween 0° and 12° (figure 14c). This is due to the value of 2 for the semi-aspect
ratio of the wings, resulting in a lower slope of the lift coefficient (Glauert
(1926)), in comparison with present two-dimensional LDVM simulation (infi-
nite aspect ratio). For 12° < α < 30°, a gain of around 28% is observed for
the gaps ∆Z/c = 0.85 and 0.9, which is larger than what is found in present
LDVM simulations between ∆Z/c = 0.75 and 1 (around 15%). Comparisons
with measurements of Scharpf and Mueller (1992) at a slightly lower Reynolds
number of 8.5 × 104 (figure 15d), show a slope of the lift coefficient closer
to 2π rad−1. Again, the monoplane lift coefficient is better, up to the post-
stall drop for α > 18°. LDVM simulation seems to agree relatively well with
available experimental data, as far as different airfoils are use for comparison.

5 Lift efficiency ratio

In order to quantify the control induced by potential effects or vortex shed-
ding between the airfoils, a systematic study of the lift coefficient is carried
out for different gaps and staggers. The lift efficiency ratio is defined (Jones
et al. (2015)), comparing the averaged total lift coefficient for the two-airfoil
arrangement CL,t with the averaged monoplane lift coefficient CL,m as:

RL =
CL,t
CL,m

(36)

The comparison of present LDVM simulations with measurements of Scharpf
and Mueller (1992) are given in table 1. The agreement of the lift efficiency ra-
tio is relatively good, since airfoils and Reynolds numbers are slightly different,
but there is only one arrangement (stagger ∆Z/c = 0 and gap ∆X/c = 1.5)
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(a)

(b) (c)

Fig. 14: Lift coefficient obtained by LDVM versus angle of attack for SD7003
airfoils and a Reynolds number of 105 for the monoplane arrangement and the
two-airfoil arrangement for different values of stagger and gap: (a) ∆X/c =
0, (b) ∆X/c = 0.5 and ∆Z/c < 0, (c) ∆X/c = 0.5 and ∆Z/c ≥ 0 with
comparisons to a two-plate arrangement of flat plates (Jones et al. (2015)).

and three values of the angle of attack. In order to provide a wider range of
comparison, the data of Jones et al. (2015) concerning a two-airfoil arrange-
ment of flat plates is chosen. Note that this airfoil is not cambered, it would
provide lower lift coefficient than a cambered airfoil for the same angle of at-
tack, and would promote flow detachment. In addition, the semi-aspect ratio
of 2 in Jones et al. (2015) is relatively small in comparison with that of the
present two-dimensional LDVM simulations.

Figures 16 and 17 present the lift efficiency ratio versus the angle of attack
for a Reynolds number of 105, with different stagger ∆X/c steps, between 0.5
and 1.5 and gap −1 ≤ ∆Z/c ≤ 1.5. As the comparison between LDVM and
measurements is realized between airfoils of different camber and thickness, the
data for α = 5◦ are not plotted, because the low values of lift coefficient for
low values of the angle of attack are leading to greater errors in the estimate
of lift efficiency ratios. In figure 16a for ∆X/c = 0, an increase of the lift
efficiency ratio is obtained for ∆Z/c ≥ 0.5. and angles of attack larger than 15°,
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(a) (b)

(c) (d)

Fig. 15: Lift coefficient obtained by LDVM versus angle of attack for SD7003
airfoils and a Reynolds number of 105 for the monoplane arrangement and the
two-airfoil arrangement for different values of stagger and gap: (a) ∆X/c = 1
and ∆Z/c < 0, (b) ∆X/c = 1 and ∆Z/c ≥ 0, (c) ∆X/c = 1.5 and ∆Z/c < 0,
(d) ∆X/c = 1.5 and ∆Z/c ≥ 0 with comparisons to a two-airfoil arrangement
of Wortmann FX63− 137 airfoils at a Reynolds number of 8.5× 104 (Scharpf
and Mueller (1992)).

corresponding to detached flow conditions of the single-airfoil arrangement.
The maximum gain in lift efficiency is 1.31 for ∆Z/c = 0.75 and α = 25°.
A similar result is observed for a flat plate arrangement in figure 16b (Jones
et al. (2015)), but for angles of attack larger than 20° and with a maximum
gain of 1.11 for ∆Z/c = 0.83 and α = 30°. For ∆X/c = 0.5, there is a similar
development of RL with gap and angle of attack for both LDVM simulations
around SD7003 airfoils (figure 16c) and experiments around flat plates (figure
16d). A minimum value of the lift efficiency, lower than 0.4, is found for∆Z/c =
0. A gain in efficiency is obtained for α > 20° and∆Z/c ≥ 0.5, with a maximum
of 1.13 for SD7003 airfoils and 1.32 for flat plates. Note for the arrangement
of SD7003 airfoils, a second region of gain in lift efficiency, which is not much
present for the arrangement of flat plates, for ∆Z/c ≤ −0.5, with a maximum
of 1.19 for ∆Z/c = −1 and α = 20°. A similar tendency is observed for stagger
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Researchers Airfoil α (°) RL

Scharpf and Mueller (1992) Wortmann FX63 − 137 0 0.97

5 1.00

10 0.79

present LDVM SD 7003 0 0.94

5 0.98

10 0.76

Table 1: Lift efficiency ratio for stagger ∆Z/c = 0 and gap ∆X/c = 1.5
at angles of attack between 0° and 10° and for a two-airfoil arrangement of
Wortmann FX63−137 at a Reynolds number of 8.5×104 (experimental results,
Scharpf and Mueller (1992)) and for a two-airfoil arrangement of SD7003 at a
Reynolds number of 105 (present LDVM).

∆X/c = 1.5 with a maximum gain of 1.12 for SD7003 airfoils (figure 17a)
and 1.26 for flat plates (figure 17b), and a gain of 1.09 for SD7003 airfoils
and ∆Z/c = −1.25. Again, the same tendency is found for ∆X/c = 1.5, with
a maximum gain of 1.12 for SD7003 airfoils (figure 17c), a slight decrease of
the gain of 1.15 for flat plates (figure 17d), and a gain of 1.11 for SD7003
airfoils and ∆Z/c = −1. A general agreement is found between LDVM and
the experiment, although the airfoils and wing aspect ratios considered are
different.

Figure 18 presents the flow vortices for stagger ∆X/c = 1 and angle of
attack α = 20° for the single-airfoil arrangement and the two-airfoil arrange-
ment, with different gaps ∆Z/c at the same time of the simulation. The value
of the angle of attack corresponds to the maximum lift efficiency ratio ob-
tained for |∆Z/c| ≥ 0.75. The reference of the single-airfoil arrangement is
presented in figure 18a. A detached flow starts from the leading edge of the
airfoil, evidenced by the generation of a shear layer consisting in a line of neg-
ative circulation centers. These centers merge into a large vortical structure on
the suction side. For this particular time, a LEV is about to leave the detached
airfoil. We can also observe the generation of a TEV and the development of
a wake with pairs of counter-rotating shedding vortex clusters. For the two-
airfoil arrangement and ∆Z/c = −1.5 (figure 18b), a potential interaction
between the airfoils is evidenced by discrepancies in vortex clusters generation
from the single-airfoil arrangement. In particular, a large vortex structure is
forming on the suction side of the forefoil, with a mixing of positive and neg-
ative vortical centers shedding downstream. This is the evidence of a phase
shift of the vortex shedding between the two airfoils. The gain in RL observed
for this value of gap is probably due to a potential effect between the bound
circulation of the airfoils. Similar flow features are observed for ∆Z/c = −1
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(a) (b)

(c) (d)

Fig. 16: Lift efficiency ratio versus gap ∆Z/c for a two-airfoil arrangement at a
Reynolds number of 105: left column LDVM results of SD7003 airfoils for: (a)
∆X/c = 0, (c) ∆X/c = 0.5, right column experimental results of flat plates
(Jones et al. (2015)) for: (b) ∆X/c = 0 , (d) ∆X/c = 0.5.

(figure 18c), with no mixing between the LEV and TEV emitted from the
two airfoils in the wake. For ∆Z/c = −0.5 (figure 18d), the airfoils closeness
strongly affects vortex shedding. The detached flow region on the forefoil is
deviated above by the hindfoil, resulting in a drop of the total lift coefficient
as observed in figure 17b. For ∆Z/c = 0 (figure 18e), the LEV and TEV of the
forefoil are trapped between the two airfoils, resulting in a very strong inter-
action, a detached pressure side on the hindfoil and a single wake and vortex
shedding. As a consequence, the lift coefficient on each airfoil is half the one
obtained for a single-airfoil arrangement, resulting in RL ∼ 0.5 (figure 17a).
For ∆Z/c = 0.5 (figure 18f), for the particular value of stagger ∆X/c = 1, the
two airfoils are practically aligned and form an unique airfoil, resulting in an
attached pressure side and a completely detached suction side. The flow on
this airfoil arrangement is rather similar to the flow around a single airfoil of
chord 2c and as a result RL ∼ 1 (figure 17a). A unique wake, consisting in
pairs of counter-rotating vortices, is developing downstream. The interaction
between the shedding vortices from the forefoil and hindfoil suction sides be-
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(a) (b)

(c) (d)

Fig. 17: Lift efficiency ratio versus gap ∆Z/c for a two-airfoil arrangement at a
Reynolds number of 105: left column LDVM results of SD7003 airfoils for: (a)
∆X/c = 1, (c) ∆X/c = 1.5, right column experimental results of flat plates
(Jones et al. (2015)) for: (b) ∆X/c = 1, (d) ∆X/c = 1.5.

comes positive again for ∆Z/c = 1 (figure 18g). For particular times, the LEV
of the forefoil is forcing the reattachment of the flow on the hindfoil pressure
side, leading to RL > 1. Similar features are observed for ∆Z/c = 1.5 (figure
18h). Note that in these two arrangements, two distinct wakes with pairs of
counter-rotating vortices, are developing downstream from the airfoils.

In order to understand the positive interaction between the airfoils, figure
19 presents vortex shedding for stagger ∆X/c = 1, gap ∆Z/c = 1 and α = 20°

for three different times, for which the flow is completely established. A de-
tached flow is continuously starting from the leading edge of the forefoil. These
centers of negative vorticity can merge into a large vortical structure on the
suction side. The potential effect between the airfoils and the shedding vor-
tices influence on them, are clearly observed by an asymmetry of the vortical
centers flowing around each airfoil. In particular the LEV shedding from the
forefoil on the hindfoil suction side produces a leading edge reattachment at
some time (figure 19a). The suction side of the hindfoil is also able to detach
from the leading edge and generate a LEV (figure 19b). The consequence of
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 18: Vortex shedding (vortex circulation negative in blue, close to 0 in green
and positive in red) at 20° angle of attack for t∗ = 100 for: (a) a single-airfoil
arrangement, and for the two-airfoil arrangement for stagger ∆X/c = 1 and
gap: (b) ∆Z/c = −1.5, (c) ∆Z/c = −1, (d) ∆Z/c = −0.5, (e) ∆Z/c = 0, (f)
∆Z/c = 0.5, (g) ∆Z/c = 1, (h) ∆Z/c = 1.5.
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(a) (b) (c)

Fig. 19: Vortex shedding (vortex circulation negative in blue, close to 0 in
green and positive in red) for a two-airfoil arrangement with SD7003 airfoils
at a Reynolds number of 105 for stagger ∆X/c = 1, gap ∆Z/c = 1 and α = 20°

for different times of the simulation.

alternate detached and attached flow on the suction side of the hindfoil is a
time-averaged total lift coefficient larger than the monoplane coefficient for
the same airfoil and angle of attack. This mechanism can be interpreted as
a flow forcing, or passive control, of the suction side of the hindfoil by the
vortex structures shedding from the forefoil. LEV and TEV from the forefoil
and fhindfoil are mixing in the wake resulting in the two-airfoil arrangement
with two pairs of counter-rotating shedding vortices (figure 19c).

Figures 20 and 21 show the lift coefficient for the individual airfoils as
a function of gap ∆Z/c for α = 20°. The dashed line corresponds to the
monoplane lift coefficient and the green squares to the total lift coefficient. For
∆X/c = 0 (figure 20a) the upper forefoil produces greater lift than the lower
forefoil, except for∆Z/c = 0.25 where the two airfoils are very close. The upper
airfoil forces the flow over the lower airfoil closer to the surface, producing for
this latter airfoil a reattachment of the separated shear layer from the leading
edge and a larger lift coefficient. For ∆Z/c = 0.25, there is a strong high speed
flow in the region between the airfoils, associated with low pressure resulting
in suction on the lower airfoil which would explain the gain in lower airfoil
lift and the loss in upper airfoil (Jones et al. (2015)). For ∆X/c = 0.5 (figure
20b), the forefoil produces greater lift than the hindfoil for ∆Z/c > −0.5,
the situation is reversed for ∆Z/c < −0.5 and both airfoils produce almost
the same lift for ∆Z/c = −0.5. The comparison of the lift coefficients of the
forefoil and hindfoil with Jones et al. (2015) for the same stagger but α = 25°,
are rather similar, but the lift on the hindfoil is lower for ∆Z/c < 0. This
can be explained by the fact that in present LDVM simulations, a cambered
SD7003 airfoil with a round leading edge is considered. For airfoils in close
neighborhood, the surface camber and leading edge radius provide a better
flow streamlining than a flat plate and better aerodynamic performances. For
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(a)

(b)

Fig. 20: Lift coefficient for the single-airfoil and the two-airfoil arrangements
at 20° angle of attack versus gap ∆Z/c for different stagger: (a) ∆X/c = 0,
(b) ∆X/c = 0.5.

∆X/c = 1 and ∆X/c = 1.5 (figures 21a and 21b), similar lift distribution are
found between the forefoil and hindfoil than for ∆X/c = 0.5. Note a good
agreement with Jones et al. (2015) for these parameters, showing that there is
less influence of the airfoil geometry on the flow for large values of the stagger.

6 Conclusion

The LDVM is a useful low-order method to study the instantaneous flow de-
velopment around an unsteady airfoil at a low computing cost (Ramesh et al.
(2014), Faure et al. (2019)). The LDVM is implemented for the investigation of
the unsteady flow around a two-airfoil arrangement. To solve the problem, an
additional condition is necessary, that is the initial circulation for each airfoil
equals zero, while the global flow depends on the whole set of shedding vor-
tices. The two-airfoil LDVM is successively compared to CFD simulations of
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(a)

(b)

Fig. 21: Lift coefficient for the single-airfoil and the two-airfoil arrangements
at 20° angle of attack versus gap ∆Z/c for different stagger: (a) ∆X/c = 1,
(b) ∆X/c = 1.5.

Broering and Lian (2012) for flapping tandem flat plates at a Reynolds num-
ber of 5000 and to PIV measurements of Rival et al. (2010) for the flapping
of a SD7003 airfoil on a downstream airfoil at a Reynolds number of 30, 000.

For constant angle of attack static two-airfoil arrangement and fixed dis-
tance in airfoil frame of reference, the comparison of instantaneous measured
flow fields with LDVM results are in relatively good agreement. The lift, drag
and quarter chord pitching moment coefficients agree relatively well, even if
some discrepancies in the stall angle values are found, probably due to the dif-
ference between the airfoils under comparison, aspect ratios and wing surface
roughness in the experimental set-up. A parametric study with stagger and gap
in the two-airfoil arrangement is carried out for the lift coefficient development
with angle of attack. A gain in lift coefficient for the two-airfoil arrangement is
found between 15° and 35° for particular values of the gap. A maximum gain is
reached for ∆X/c = 0 and ∆Z/c between 0.5 and 0.75. For the angles of attack
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larger than 35°, the monoplane lift coefficient is always larger. In order to find
the best arrangement between the airfoils, a lift efficiency ratio is defined com-
paring the averaged total lift coefficient for the two-airfoil arrangement with
the monoplane lift coefficient. Comparison of the present LDVM simulations
on an arrangement of two SD7003 airfoils with the measurements obtained on
a two-plate arrangement are in very good agreement in terms of the develop-
ment of the lift efficiency ratio with angle of attack and gap. Minima of the
lift efficiency ratio are observed for small gaps ∆Z/c ∼ 0, and maxima for
large gaps and large angles of attack, typically larger than 20°. Because of the
relatively low values of the maximum lift coefficient observed for the two-plate
arrangement, the lift efficiency ratio is better than for the two-airfoil arrange-
ment. In addition, a second region of gain in the lift efficiency ratio is found
for the two-airfoil arrangement for negative values of the gap, which is not
really found for the two-plate arrangement. This is evidence that the airfoil
camber and leading edge curvature radius must contribute to the efficiency
improvement of the arrangement. The physical analysis of the lift efficiency
gain is studied from vortex shedding from LDVM simulations arrangement of
two SD7003 airfoils. For large values of the gap, typically |∆Z/c| > 1, the lift
efficiency gain is mainly caused by a potential interaction between the bound
circulation of the airfoils. For small values of the gap, the vortices shedding
from the forefoil are trapped and cause a detachment on the hindfoil pressure
side and a drop of the lift coefficient. A vortex forcing of the suction side of
the hindfoil by vortices shedding from the forefoil at particular times is also
observed for ∆Z/c = 1, resulting in an increased lift efficiency ratio.

The two-airfoil arrangement seems to be a good way of improving airfoil
lift performances for detached flow conditions and particular setting of the
stagger and gap. This result is valid for cambered airfoils as for flat plates.
The LDVM algorithm adapted to that configuration has proved to be a rapid
and useful tool for aerodynamic coefficient prediction and flow analysis.
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