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The Leading-edge-suction-parameter modulated Discrete Vortex Method is extended to a wing with finite span and
no sweep, in order to get the development of aerodynamic coefficients with angle-of-attack, from attached to com-
pletely detached flow conditions. A first case considering the unsteady pitching motion of a flat plate is compared with
published experimental and numerical results. Then, dependence of lift, drag and pitching moment coefficients with
angle-of-attack is discussed for a wing built on a SD7003 airfoil at constant angle-of-attack. The three-dimensional
effects on the lift coefficient curve for a completely detached wing are established.

I. INTRODUCTION

In recent years, unsteady aerodynamics of wings in incom-
pressible flow, operated on moderate Reynolds numbers in the
range 104 to 105, has gained in importance, for unmanned air
vehicles (UAV) and micro air vehicles (MAV) applications1,2.
This physics is also fundamental for understanding the flap-
ping wing motion of birds and insects. In all these appli-
cations, it is necessary to fly at conditions close to the stall
point, and post-stall flight would occur during maneuvers.
The present investigation focuses on the development of a
low-order discrete vortex method to predict the aerodynamic
performances of a finite-span wing.

The first analytical method for the estimate of lift coeffi-
cient of a constant angle-of-attack, attached flow airfoil, was
the thin airfoil theory3–5. The unsteady solution for the lift
of an airfoil undergoing a step change in angle-of-attack was
solved6. A potential flow solution for a flat plate oscillating
in pitch and plunge with a small-amplitude harmonic motion
was developed7. Unsteady aerodynamic theories and their ap-
plications to flapping or aeroelasticity of an airfoil have been
established8,9. These methods are valuable but are based on
the potential theory, and their use is limited to fully attached
flows. The adaptation of the potential theory to detached flows
emerges in the 1970s with the advances in computer science,
with relative limited power at that time. Vortex shedding was
introduced to model the flow behind a detached body10–12.
The detached flow behind a flat plate was numerically studied
using a vortex method and a conformal transform13,14. The
knowledge of the separation position on an airfoil allowed
to adapt a discrete vortex method for a partially detached
airfoil15. The development of more powerful computers led
flow simulation toward another way with the high-order res-
olution of Navier-Stokes equations and closure models, and
approaches like Discrete Eddy Simulation (DES), Large Eddy
Simulation (LES) or Direct Numerical Simulation (DNS).
However, these approaches present heavy computing costs
and require long simulation time. For this reason, discrete
vortex methods came back in use recently as alternative low-
order methods to classical high-order Computational Fluid

a)Electronic mail: thierry.faure@ecole-air.fr.

Dynamics (CFD), to address engineering issues with relevant
accuracy. A method has been developed16 for the prediction
of continuous vortex shedding around a general sharp-edged
solid body, moving in an inviscid fluid at Reynolds numbers
between 100 and 1000. Discrete vortex methods have also
gain in interest recently17–20 to model flow separation down-
stream of a cylinder21 or leading edge vortices22 in unsteady
flows. However, these methods are limited to start and stop
criteria for the vortex shedding. This issue was addressed with
the implementation of a leading edge suction parameter23,24.
That criterion allows a wide range of applications for any
airfoil geometry, with sharp or rounded leading edges, and
any arbitrary motion. It proves its robustness and its rela-
tive accuracy as long as a leading edge boundary layer sep-
aration occurs and is fully validated at Reynolds numbers of
3×104 and 105. The Leading-edge-suction-parameter modu-
lated Discrete Vortex Method (LDVM) algorithm is based, for
each time step, on iterative schemes to obtain the amplitude of
the last generated vortices through a converging time consum-
ing process. A modified algorithm has been implemented25,
where the Newton-Raphson iteration search is replaced by a
linear system, providing a reduction of the simulation time by
a factor of 2. The method was adapted for the interaction be-
tween two airfoils with wakes and vortex shedding effects26.
The leading-edge singularity in unsteady thin-aerofoil theory
has been recently resolved27. However, all these discrete vor-
tex methods are limited to airfoils and two-dimensional (2D)
flows.

In the present paper, three-dimensional (3D) effects are
considered coupling the LDVM with the lifting line theory28

for a finite aspect ratio unswept wing29. The unsteady case of
a flat plate pitching motion is first considered and compared
with results of experiments and numerical simulations30. The
dependence of lift, drag and pitching moment coefficients
with angle-of-attack is provided for the unsteady flow around
a fixed wing built on a SD7003 airfoil. Comparisons with
available data are presented for different aspect ratios and
Reynolds numbers, from low to large values of the angle-of-
attack. An invariant region of the lift coefficient for angles-of-
attack larger than 30◦ is found and the 3D effects on this curve
are established.
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FIG. 1: Unsteady airfoil frame of reference (x,z) and
aerodynamic frame of reference (X ,Z).

II. 3D LDVM

A. LDVM

The founding principles and calculation parameters of the
LDVM are similar to the ones presented in Ramesh et al.23,24

and reminded in this section. The method is valid for the un-
steady flow on a thin airfoil undergoing arbitrary motion. The
flow can be attached or detached, but for the latter case, a
leading edge separation is necessary. Some discrepancies be-
tween the actual flow and LDVM are observed if a boundary
layer separation over a portion of the airfoil exists. An air-
foil of chord c is placed in an upstream flow of magnitude U∞

with an angle-of-attack α (t), the aerodynamic frame of refer-
ence is (X ,Z) with X the direction of U∞ and Z perpendicular
to X (figure 1). The flow velocity components in this frame
are U and W . The airfoil frame of reference is (x,z) with x
the chordwise direction and z perpendicular to x, the velocity
component normal to the airfoil is w. A plunging motion h(t)
of the airfoil along axis Z is modeled, but is not considered in
the unsteady motion used in section III.

The time-dependent vorticity distribution along x is written
as a Fourier series5:

γ (θ , t) = 2U∞

[
A0 (t)

1+ cosθ

sinθ
+

∞

∑
n=1

An (t)sinnθ

]
(1)

with the new variable θ resulting from the transformation
of the chordwise coordinate x such as:

x = c
2 (1− cosθ)

The time-dependent Fourier coefficients are obtained from
the velocity field w(t) by enforcing the boundary condition
that the flow must remain tangential to the airfoil:

A0(t) =−
1
π

∫
π

0

w(θ , t)
U∞

dθ (2)

An(t) =
2
π

∫
π

0

w(θ , t)
U∞

cosnθdθ (3)

The induced velocity normal to the airfoil is calculated from
motion kinematics31:

w(x, t) =
∂η

∂x
(x, t)

[
∂ΦT EV

∂x
(x, t)+

∂ΦLEV

∂x
(x, t)

+U∞ cosα(t)+ ḣsinα(t)
]

−∂ΦT EV

∂ z
(x, t)− ∂ΦLEV

∂ z
(x, t) (4)

−U∞ sinα(t)− α̇(t)(x− xp)+ ḣcosα(t)

where ΦLEV and ΦT EV are the velocity potentials associ-
ated with leading edge and trailing edge vortices, η the airfoil
camberline, xp the pivot location, α̇ the time derivative of the
angle-of-attack corresponding to a pitch motion and ḣ the air-
foil velocity along Z, corresponding to a plunge.

The leading-edge-suction-parameter (LESP) is a non-
dimensional measure of the suction at the leading edge8

which is equal to the first Fourier coefficient of the vorticity
distribution24:

LESP(t) = A0(t)

The critical value LESPcrit corresponds to the A0 value as-
sociated with the angle-of-attack for which spikes appear in
the negative part of the friction coefficient near the leading
edge suction side24. It is a measure of the maximum suc-
tion that a given airfoil can bear before separation and is
independent of its motion32,33. Parametric studies with ex-
periments and CFD show that there is a motion independent
critical value of the LESP, for a given airfoil and Reynolds
number, at which leading edge vortex formation is initiated34.
Beyond that value LESPcrit , the airfoil suction side boundary
layer separates from the leading edge, which corresponds to
the release of a leading edge vortex.

At each time step i, a trailing edge vortex (TEV) is shed. A
leading edge vortex (LEV) is shed only if the LESP exceeds
its critical value. The circulations associated with these LEV
and TEV are obtained from Kelvin’s condition:

ΓB +
i

∑
k=1

ΓT EV,k +
i

∑
l=1

ΓLEV,l = 0 (5)

where ΓB is the bound circulation calculated by integrating
the chordwise distribution of vorticity over the airfoil:

ΓB =U∞cπ

[
A0(t)+

A1(t)
2

]
(6)

If the LESP becomes lower than its critical value, LEV
shedding is stopped. Then, the LESP concept is a single em-
pirical parameter governing the wall viscous effect and bound-
ary layer detachment.

Non-dimensional variables are introduced:

w∗ = w
U∞

U∗ =
U
U∞

W ∗ =
W
U∞

X∗ = X
c Z∗ = Z

c Γ* = Γ
U∞c

η∗ =
η
c ḣ∗ = ḣ

U∞
α̇∗ = c

U∞

dα
dt
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The velocity induced by the kth vortex is described with the
model of Vatistas et al.35 which considers a finite core radius
rc with a solid-body rotation:

U∗k =
Γ∗k
2π

Z∗−Z∗k√[(
X∗−X∗k

)2
+
(
Z∗−Z∗k

)2
]2

+ r∗4c

(7)

W ∗k =−
Γ∗k
2π

X∗−X∗k√[(
X∗−X∗k

)2
+
(
Z∗−Z∗k

)2
]2

+ r∗4c

(8)

with:

r∗c =
rc
c

The non-dimensional time step is24:

δ t∗ = δ tU∞
c = 0.015

The vortex core radius is taken to be 1.3 times the average
spacing between vortices36:

r∗c =
rc
c = 1.3δ t∗ = 0.02

The location of the new kth vortex is approximated by
drawing a vector from the shedding edge to the previous shed
vortex and taking the position at one-third of this distance17,
for instance for the TEV:

X∗T EV,k = X∗T E + 1
3

(
X∗T EV,k−1−X∗T E

)
Z∗T EV,k = Z∗T E + 1

3

(
Z∗T EV,k−1−Z∗T E

)
The advantage of the current approach is that account is

taken not only of the wing motion since the last time step but
also of the advection of the previous shed vortex, giving over-
all a more accurate depiction of the flow.

First, consider the case with no LEV shedding (|LESP| ≤
|LESPcrit |). The airfoil bound circulation is equal to25:

Γ
∗
B = I1 +Γ

∗
T EV,iI2 (9)

with I1 and I2 parameters independent from circulations
computed for time step i. From Kelvin’s theorem (5), we get:

Γ
∗
T EV,i =−

I1 +∑
i−1
k=1 Γ∗T EV,k +∑

i−1
l=1 Γ∗LEV,l

1+ I2
(10)

For the case where a LEV and a TEV are shed (|LESP| >
|LESPcrit |), Kelvin’s theorem and the condition on the critical
LESP lead to25:

Γ
∗
B +Γ

∗
T EV,i +Γ

∗
LEV,i +

i−1

∑
l=1

Γ
∗
T EV,l +

i−1

∑
l=1

Γ
∗
LEV,l = 0 (11)

A0−LESPcrit = 0 (12)

which can be written as a linear system depending only on
the unknown vortex circulations for time step i:

I1 +Γ
∗
T EV,i (1+ I2)+Γ

∗
LEV,i (1+ I3)

+
i−1

∑
k=1

Γ
∗
T EV,l +

i−1

∑
l=1

Γ
∗
LEV,l = 0 (13)

J1 +Γ
∗
T EV,iJ2 +Γ

∗
LEV,iJ3−LESPcrit = 0 (14)

with I1, I2, I3, J1, J2 and J3 parameters independent from
circulations. In addition, a condition to avoid the traversing
of the camberline by a vortex has been added to the initial
LDVM. This change is marginal since very few vortices are
following this path. Note that for vortex circulation computa-
tion, there is no Newton-Raphson iterative loop at each time
step anymore25.

A main disadvantage of discrete vortex methods is the ex-
ponential increase in computational time with the number of
vortices in the flow field. An amalgamation method based
on a k-d tree of neighboring vortices37 is adopted for vorti-
cal centers situated 4 chords downstream of the wing, in order
to reduce the computing cost. Then, the simulation time is
brought down from a dependence as the square of the number
of shed vortices to a linear dependence25.

The aerodynamic normal and axial forces are obtained from
the Fourier coefficients24:

FN(t) = ρU∞cπ

[(
U∞ cosα + ḣsinα

)(
A0 +

A1

2

)
+c
(

3Ȧ0

4
+

Ȧ1

4
+

Ȧ2

8

)
(15)

+ρ

∫ c

0

[(
∂ΦT EV

∂x

)
+

(
∂ΦLEV

∂x

)]
γ (x, t)dx

]

FA(t) = ρπcU2
∞A2

0 (16)

The lift and drag forces are obtained by:

L(t) = FN(t)cosα +FA(t)sinα (17)
D(t) = FN(t)sinα−FA(t)cosα (18)

Similarly for the pitching moment coefficient from the po-
sition xre f :

M(t) = xre f FN

−ρπc2U∞

{(
U∞ cosα + ḣsinα

)(A0

4
+

A1

4
− A2

8

)
+c
(

7Ȧ0

16
+

3Ȧ1

16
+

Ȧ2

16
− Ȧ3

64

)
(19)

−ρ

∫ c

0

[(
∂ΦT EV

∂x

)
+

(
∂ΦLEV

∂x

)]
γ (x, t)xdx

}
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Then, the aerodynamic coefficients CL(t), CD(t) are ob-
tained dividing the forces by the upstream flow dynamic pres-
sure multiplied by the chord, and the moment coefficient
CM(t) by dividing the quarter chord moment by the upstream
flow dynamic pressure multiplied by the square of the chord.

B. Lifting line theory

A wing of span b and chord c is placed in an unsteady up-
stream flow of magnitude U∞ with an angle-of-attack α (t),
the span direction in the wing frame of reference is y. Let us
define the new parameter ψ such as:

y =−b
2 cosψ

The wing is modeled by a distribution of horseshoe vortices
along the span, providing a circulation:

Γ(ψ, t) = 2bU∞

N

∑
n=1

Pn (t)sinnψ (20)

The variation of circulation along the span results in vor-
tex filaments being shed down the flow in accordance with
Helmholtz’s theorem. The shed filament has a strength equal
to the spanwise derivative of circulation distribution and re-
sults in upwash and downwash on the outboard and inboard
wing sections respectively29:

dΓ

dψ
(ψ, t) = 2bU∞

N

∑
n=1

nPn (t)cosnψ (21)

The downwash at a specific spanwise station y, correspond-
ing to a parameter ψ , resulting from all the shed filaments is
given by:

wi (ψ, t) =− 1
2πb

∫
π

0

dΓ
dψ

(ψ∗, t)

cosψ− cosψ∗
dψ
∗ (22)

Replacing the circulation in this expression:

wi (ψ, t) =−U∞

N

∑
n=1

nPn (t)
sinnψ

sinψ
(23)

C. Coupling between LDVM and lifting line theory

Consider the coupling between the 2D LDVM and the lift-
ing line theory. Both of these methods are based on poten-
tial flow, possibly augmented for an unsteady motion and de-
tached conditions, by the addition of vortex lines. A poten-
tial flow is characterized by a potential function Φ solution of
Laplace’s equation, which is a second order linear differential
equation. Therefore, the superposition principle states that it

is possible to add the potential functions of different potential
flows, and as a consequence their velocities since w = ∂Φ/∂ z.
Then, the induced velocity is decomposed into:

w(t) = w2D (θ , t)+wi (ψ, t) (24)

The time-dependent Fourier coefficients of the thin airfoil
theory (Eq. 2, 3) are written as29:

A0(t) = A0,2D(t)+A0,3D(t)

An(t) = An,2D(t)

with:

A0,3D(t) =
N

∑
n=1

nPn (t)
sinnψ

sinψ
(25)

The chordwise circulation at each strip along the wing span
is:

Γ(ψ, t) =U∞cπ

[
A0,2D (t)+A0,3D (t)+

A1,2D (t)
2

]
(26)

It has been shown that there is no influence of the number
of 2D spanwise sections on the flow solution, from 9 sections
along the wing. The lift, drag and pitching moment coeffi-
cients are obtained integrating along the wing, the coefficients
obtained for each section. A disadvantage of the coupling be-
tween the 2D LDVM and the lifting line theory is that it is only
valid for unswept wings with planar wakes. Vortices shed for
a spanwise station are assumed to have a negligible effect on
vortices shed from other spanwise stations29.

III. UNSTEADY MOTION OF A FLAT PLATE

The generation of LEV on an accelerating or pitching flat
plate is a benchmark case for the validation of numerical
methods, from low to medium Reynolds numbers19,30,38,39.
The 3D LDVM is compared with published data30 for a wing
aspect ratio of 4 built on an airfoil section which is a flat plate,
at Reynolds numbers between 30 and 40,000. The flat plate
wing motion is a translational rectilinear pitch, meaning a
pitch about a spanwise-aligned axis placed at the leading edge,
in steady free-stream. The history of the angle-of-attack is a
linear ramp with smoothed corners, according to the Eldredge
function40 (figure 2). Non-dimensional time t∗ = 0 corre-
sponds to the beginning of increase in angle-of-attack α from
0◦, and t∗ = 1 corresponds to the end of the ramp with α =
45◦. The lift and drag coefficients presented hereafter cor-
respond to water tunnel measurements (Stevens and Cetiner
at Re = 10,000, Granlund, Yu and Mancini at Re = 20,000)
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FIG. 2: History of the fast ramp in pitch using the Eldredge
function40, with a constant free-stream.

or CFD simulations (Reynolds-averaged Navier-Stokes equa-
tions computations from Gozukara at Re = 3600 and 10,000,
and immersed boundary method on a Cartesian Lagrangian
grid from Jantzen at Re = 300). It has been shown30 that
lift history is weakly dependent on Reynolds number from
Re > 100, as soon as LEV formation occurs.

Figures 3 and 4 present the lift coefficients for the afore-
mentioned data sets compared with the 2D LDVM24,25 and
present 3D LDVM for a wing aspect ratio AR = 4. For both
LDVM simulations, the Reynolds number is 10,000. In order
to avoid too many graphs on the same figure and to compare
the different data sets with the 2D LDVM and 3D LDVM, the
development of the lift coefficient is presented in two differ-
ent figures. In figures 3 and 4, a first maximum lift coefficient
is generally found around t∗ = 0 and corresponds to a LEV
generation associated with a leading edge detachment. In data
of Stevens and Jantzen (figure 3), this peak is even larger than
the prediction of the 2D LDVM, which predicts larger values
than the 3D LDVM. However, between t∗ = 0.25 and 1 the
amplitude of CL(t∗) is lower than the 2D LDVM prediction.
A second maximum is observed around t∗ = 0.7, with an am-
plitude larger than the first maximum in some data sets, and
placed between t∗ = 0.5 and 0.9, followed by a drop around
t∗ = 1 and a rise. A good agreement between the various data
sets is observed in figure 4, which match much more with
the 3D LDVM than with the 2D LDVM. Note that the peak
(around t∗ = 0) and valley (around t∗ = 1) associated with the
rapid change in angle of attack are not present in Yu.

Figures 5 and 6 are the lift coefficient history up to t∗ = 8.
Previous data for wings and the 3D LDVM tend to converge
toward a lift coefficient around 1.4 for t∗ > 3, which is not the
case for the 2D LDVM which exhibits larger values. The 3D
LDVM presents periodic oscillations not observed in the other
simulations or experiments, with, for t∗ > 3, a component as-
sociated with a period T ∗ ∼ 3. Since the Strouhal number is
defined, for an airfoil with an angle of attack α , as:

St = f csinα

U∞
= sinα

T ∗ = 0.23

This value is close to the value around 0.2 observed down-
stream of an airfoil if a vortex shedding is present41,42. There-

FIG. 3: Comparison of lift coefficient short time history
between the 2D and 3D LDVM and data30 for the flat plate

fast pitch with AR = 4.

FIG. 4: Comparison of lift coefficient short time history
between the 2D and 3D LDVM and data30 for the flat plate

fast pitch with AR = 4 (continued).

fore, the oscillations may be due to the periodic LEV and TEV
shedding downstream of the wing, for completely detached
flow at large angle-of-attack, as the ones observed for a flat
plate39. The fact that these modulations are not observed in
most of the lift coefficient data30 is probably due to signal-to-
noise filtering in the experiments.

Figures 7 and 8 are the time development of drag coefficient
for the same data sets. Again, a good agreement is observed,
particularly for the rise of drag coefficient associated with the
increase in angle-of-attack up to a maximum for t∗ = 0.9 and
the rapid drop with a minimum for t∗= 1.1. Note that the time
position and amplitude of the maximum are well predicted by
3D LDVM while the 2D LDVM evaluation is 40% higher. For
other times, the 2D LDVM still presents much larger values
than the experiments and simulations for wings with AR = 4,
while the 3D LDVM fits better with the data sets, evidence
that the finite span of the wing is taken into account in the
method. As for CL(t∗), periodic oscillations are observed in
LDVM for CD(t∗), associated with the periodic shedding.

The spanwise flow visualization along the wing for AR = 4
is presented in figure 10 for the positions y/b = 0.25, 0.375 and

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
25

32
7



6

FIG. 5: Comparison of lift coefficient long time history
between the 2D and 3D LDVM and data30 for the flat plate

fast pitch with AR = 4.

FIG. 6: Comparison of lift coefficient long time history
between the 2D and 3D LDVM and data30 for the flat plate

fast pitch with AR = 4 (continued).

0.5 (figure 9) and angles of attack α = 23◦, 38◦ and 45◦. The
3D LDVM represents the circulation of the computed vortex
centers (circulation negative in blue, close to 0 in green and
positive in red) at a Reynolds number of 10,000. These results
are compared with planar laser illumination of fluorescent dye
in a water tunnel30 at a Reynolds number of 20,000. For
α = 23◦ (figures 10a and 10d) a LEV develops and the starting
TEV is advected downstream. There are very little discrepan-
cies between the flow fields at y/b = 0.25 and 0.375 but the 3D
effects are clearly identified for y/b = 0.5, corresponding to
the influence of the wing tip vortex. For α = 38◦ (figures 10b
and 10e), the LEV is larger at y/b = 0.25 and 0.375 and the
flow is relatively similar, but the tip vortex induces a complete
flow detachment for y/b = 0.5. For α = 45◦ (figures 10c and
10f), the LEV is completely developed at stations y/b = 0.25
and 0.375 and the tip vortex effects are larger. The spanwise
modulations of the 3D LDVM are clearly identified from the
spanwise flow development along the wing. These results are
qualitatively in good agreement with the experiments.

The vortices created on and downstream of the wing of
AR = 4 are compared with particle image velocimetry (PIV)

FIG. 7: Comparison of drag coefficient long time history
between the 2D and 3D LDVM and data30 for the flat plate

fast pitch with AR = 4.

FIG. 8: Comparison of drag coefficient long time history
between the 2D and 3D LDVM and data30 for the flat plate

fast pitch with AR = 4 (continued).

measurements and the 3D LDVM simulations in figure 11,
for different non-dimensional times. The spanwise location
is y/b = 0.25, circulation is plotted for the 3D LDVM (nega-
tive in blue, close to 0 in green and positive in red) while PIV
fields are provided with vorticity (negative in blue and posi-
tive in red). Note a relative good agreement between the 3D
LDVM and the PIV measurements. For t∗ = 0.5 (figures 11a
and 11b), the wing suction side is detached and a LEV is form-
ing and develops up to the final angle-of-attack α = 45◦ for
t∗ = 1 (figures 11c and 11d). This first LEV is still develop-
ing and is shed downstream from the wing at t∗ = 2.5 (figures
11g and 11h). The generation of a new TEV at t∗ = 3, and
the development of a periodic Kármán street, is more clearly
observed in the 3D LDVM (figures 11i and 11j). At t∗ = 5.5 a
second LEV appears to be forming (figures 11k and 11l). The
periodic generation of LEV and TEV in the 3D LDVM sim-
ulations could explain the oscillations in lift and drag coeffi-
cients observed in figures 5, 6, 7 and 8, as previously observed
in LES combined with an immersed boundary method39.
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FIG. 9: Spanwise positions of flow visualization near the
wing tip.

IV. WING AT CONSTANT ANGLE-OF-ATTACK

The 3D LDVM considers now the unsteady flow around
a wing at constant angle-of-attack. A long simulation up to
t∗ = 45 is conducted to obtain time-averaged values of lift,
drag and quarter-chord pitching moment coefficients for each
value of the angle-of-attack. As different airfoil wing sections
are compared, each aerodynamic coefficient is plotted versus
α−αL=0, with αL=0 the zero lift angle-of-attack, to get rid of
the camber effect in the positioning of each curve. Figure 12
presents the lift coefficient for small values of the angle-of-
attack, for which the flow is attached on the wing suction side
and a small portion of the post-stall region. The 2D LDVM
simulations consider a SD7003 airfoil at Re = 2.1×104. The
3D LDVM simulations consider a wing with an aspect ratio
of 8 built on a SD7003 airfoil at Re = 2.1×104. The 2D de-
tached eddy simulation of a NACA 23 012 at Re = 5.8× 104

is also plotted43 with the measurements of a wing built on a
circular arc airfoil44 with AR = 4 at Re = 2.1× 104. For at-
tached flow conditions, the slope predicted by the thin airfoil
theory, and its correction for wings of aspect ratios of 4 and 8
are also provided in the figure. The stall point of each wing is
different, because of different camberlines, but it is observed
around α −αL=0 = 15◦. On the left of this point, each plot
fits very well with the slope predicted by the thin airfoil the-
ory corrected with aspect ratio. On the right of the stall, the
drop of the lift coefficient is strongly dependent on the airfoil
wing section, but two different trends can be observed. Figure
13 presents the lift coefficient up to α−αL=0 = 90◦, with the
addition of the 2D RANS simulation using a k−ω turbulence
model45 of a SD7003 airfoil at Re = 6×104, measurements46

around a wing of AR = 3.67 built on a NACA 654 − 421
airfoil at Re = 4× 105, measurements47 around a wing of
AR = 6 built on a NACA 0012 airfoil at Re = 3.6× 105 and
measurements48 around a wing of AR = 4.1 built on a NACA
0012 airfoil at Re = 6.2× 104. For α −αL=0 > 30◦, the lift
coefficient presents a hump-like shape, with a larger height for
the 2D LDVM and a maximum around 2.4. For the wings, in-
cluding the 3D LDVM for AR = 8, a similar hump is observed,
independent on Reynolds number and aspect ratio, but with a
lower maximum around 1.2 observed for α−αL=0 = 45◦.

Similar comments are valid for the drag coefficient pre-
sented for the very same references in figure 14. Low values
of the drag coefficient are observed for α −αL=0 < 15◦, and
a rapid rise after the stall. Note that the 2D LDVM reaches
a maximum around 2.7 while the drag coefficient is limited
to a value around 1 for wings at Re∼ 6×104 fitting relatively
well with the 3D LDVM for Re∼ 2.1×104. For Re∼ 4×105,
the drag coefficient reaches a maximum around 1.8, and a de-
velopment with the angle of attack between the predictions of
2D LDVM and 3D LDVM. The discrepancy between the drag
coefficient values at large angle-of-attack could be caused by
the difference of one order in magnitude in the Reynolds num-
bers. Different surface roughness between experiments46,47

and flow simulations48 could also explain these discrepancies
for α > 30◦. However, the main reason is probably due to
the experimental set-up, the wing is placed between two pan-
els to obtained a 2D flow46,47, condition which is no longer
completely obtained for a detached flow above 30◦.

The quarter-chord pitching moment coefficient is presented
in figure 15 for the 2D and 3D LDVM and measurements46,47.
For large values of the angle-of-attack, the drop beyond α =
30◦ is larger for the 2D LDVM than for finite span wings.
Note the much lower values of this coefficient in comparison
with lift and drag coefficients, which can explain a larger scat-
tering of points.

V. CONCLUSION

The LDVM is extended, considering 3D effects resulting
from a finite span wing, coupling the 2D LDVM with the
lifting line theory. This results in the addition of a supple-
mentary term in the first Fourier coefficient of the circulation
development5. The extended 3D LDVM is validated with the
unsteady motion of a flat plate of aspect ratio AR = 4 for a
medium Reynolds number of 10,000. A good agreement is
found between previous experimental and numerical results,
for the time development of lift, drag and pitching moment
coefficients as well as vorticity temporal snapshots. The span-
wise flow modulation induced by the finite-width and the gen-
eration of the wing tip vortex is clearly considered by the 3D
LDVM, the flow simulations fitting with experimental visu-
alizations. Thus, the 3D LDVM is an appropriate low-order
method for flow predictions around a wing and applications in
engineering problems for a medium range of Reynolds num-
bers. The 3D LDVM is also used for the long duration flow
simulation of the unsteady flow around a constant angle-of-
attack wing. For attached flow conditions, the LDVM simula-
tions fit very well with the thin airfoil theory and its correction
with wing aspect ratio. For large values of the angle-of-attack,
corresponding to a completely detached wing, a great discrep-
ancy between the 2D LDVM and 3D LDVM predictions are
founds. However, the 3D LDVM is in accordance with mea-
surements in these regions, evidence of the effects of finite
span on the aerodynamic coefficients. An invariant hump-
like shaped plot of the lift coefficient versus angle-of-attack
is found for α > 30◦ for a finite span wing, with a maximum
around 1.15 for α = 45◦.
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(a) (b) (c)

(d) (e) (f)

FIG. 10: Flow visualization along the wing built on a flat plate with AR = 4 for three different spanwise position y/b = 0.25,
0.375 and 0.5: comparison between the 3D LDVM at Re = 10,000 (circulation negative in blue, close to 0 in green and positive

in red) and planar laser illumination of fluorescent dye in a water tunnel30 (reproduced with permission from NATO STO
Technical Paper TR-AVT-202 (2016) Copyright STO/NATO 2016) at Re = 20,000 for (a) 3D LDVM, t∗ = 0.5, α = 23◦, (b)

3D LDVM, t∗ = 0.75, α = 38◦, (c) 3D LDVM, t∗ = 1, α = 45◦, (d) flow visualization, t∗ = 0.5, α = 23◦, (e) flow
visualization, t∗ = 0.75, α = 38◦, (f) flow visualization, t∗ = 1, α = 45◦.
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y/b = 0.25 for (a) 3D LDVM, t∗ = 0.5, (b) PIV, t∗ = 0.5, (c) 3D LDVM, t∗ = 1, (d) PIV, t∗ = 1, (e) 3D LDVM, t∗ = 1.5, (f)

PIV, t∗ = 1.5, (g) 3D LDVM, t∗ = 2.5, (h) PIV, t∗ = 2.5, (i) 3D LDVM, t∗ = 3, (j) PIV, t∗ = 3, (k) 3D LDVM, t∗ = 5.5, (l) PIV,
t∗ = 5.5, (m) 3D LDVM, t∗ = 8 and (n) PIV, t∗ = 8.
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