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Abstract Our purpose is to quantify the rate of inter-

mittency of nonlinearly competing modes, in a dominantly

mode-switching scenario. What is the rate of presence of

each mode? Can they simultaneously appear in, or disap-

pear from the signal? The study is done in the context of

open flows, exhibiting self-sustained oscillations, where air

is here flowing over an open cavity. Reynolds numbers are

of the order of 14,000. Velocity measurements downstream

of the cavity are based on a laser Doppler velocimetry

technique. We propose two methods to estimate the rate of

presence of each mode: one based on a complex demod-

ulation technique, the other on the distribution of the state

vectors in the phase portrait of the signal.

1 Introduction

It is a remarkable fact that open flows such as jets, cavity

flows, etc., may present spontaneous self-sustained oscilla-

tions. This is typical of an unstable configuration in which a

preferred mode is selected and amplified (Rockwell and

Naudascher 1979). In the case of flows past an open cavity, it

has been observed, for medium and large Reynolds

numbers, some nonlinear competition between a few spec-

tral components (usually two) (Rockwell 1983; Kegerise

et al. 2004). The competition reveals to be dominated by a

mode switching scenario, where one mode tends to prevent

the rise of the other one, and reciprocally. Up to now, the

physical mechanisms responsible for such a nonlinear

competition has not been understood yet. In this article, we

propose to focus on a quantitative analysis of the mode-

switching phenomenon observed in the experimental flow

over an open cavity at a moderate Reynolds number. The

experimental setup and the mode-switching phenomenon

are introduced in Sects. 2 and 3. Section 4 points out the fact

that no mode-switching phenomenon is observed in a

numerical flow, whose working parameters are similar to the

experimental ones. To quantify the rate of existence of each

competing mode, we introduce two different techniques.

The first method is based on the complex demodulation of

the time-signal, using the Hilbert transform (Sect. 5). In

Sect. 6, existence rates are discussed with respect to three

different threshold values. The second method is based on

the dynamics phase portrait (Sect. 7). Both methods require

to band-pass filter the signal around the spectral components

under interest. A statistical analysis is conducted on the

competing mode lifetimes in Sect. 8. Finally, a phase space

first characterization is performed in Sect. 9, wondering

about an underlying deterministic mechanism of the mode-

switching phenomenon, before concluding in Sect. 10.

2 Experimental configuration

The system under study is a cavity of length L = 10 cm

along the longitudinal x direction of the incoming air flow,

height H = 5 cm along the vertical y direction (aspect ratio

R = L/H = 2), and width S = 30 cm along the transverse z
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direction (Fig. 1b). The cavity is enclosed into a vein

(D + H) = 12.5 cm high. The origin of the axes in the (x,y)

plane is taken at the upstream edge of the cavity, and

midspan along the transverse z direction. The air flow is

generated by a centrifugal fan placed upstream of a settling

chamber (Fig. 1a). The incoming air flow is laminar and

stationary, and the flow rate is kept constant during the

experiment. The external velocity Ue is measured using

laser Doppler velocimetry (LDV), 102 mm upstream of the

cavity and 25.5 mm above the flat plate. This point of

measurement is in the external flow sufficiently upstream

of the cavity to avoid any perturbation from the instability

developing above the cavity. At the wind tunnel outlet, the

flow is rejected inside the experimental room. The refer-

ence flow velocity is Ue = 2.09 m/s (Reynolds number

ReL = UeL/m ^ 14,000). The measurement is performed

over the x-component of the velocity downstream of the

cavity, at point x/L = 1.15, y/h = 0.33, z/‘ = 0, using a

LDV measurement. The time-series are acquired over

9 min, at a mean frequency rate of fe = 1,530 Hz. The

signal is re-sampled using a linear interpolation between

the actual points of measurement, so as to provide regular

time intervals of dt = 1/fe = 0.650 ms. The time series is

therefore constituted of about N = 840,000 points.

3 About the power spectral density

The power spectral density (psd) of the LDV signal exhibits

two main components, that are not in an harmonic ratio

(Fig. 2), the first spectral component (mode 1) at

f1 = 23.2 Hz, the second (mode 2) at f2 = 31.0 Hz. Their

peak to peak ratio is W1/W2 = 1.66 (Wi being the power

density in mode i). Other peaks appear as combinations of f1
and f2, and harmonics. By construction, the psd only pro-

vides a statistical information on the spectral weight of each

spectral component, composing the overall signal. It does

not teach anything about the actual mode coexistence or

exclusion in time. Indeed, the spectral density sensitively

depends on the instantaneous mode amplitude, but also on

its rate of presence over time. It may therefore happen that

the most energetic modes in the psd only occur very epi-

sodically in time, in the LDV signal, but with an amplitude

much larger than the amplitude of the other mode, so as to

significantly contribute to the power spectrum.

To illustrate this point, a time–frequency representation

of the signal has been plotted in the spectrogram of Fig. 3.

There, the switching phenomenon between one spectral

band, centred on f1, and a second spectral band centred on

f2, clearly appears. Such a spectrogram should however be

considered with some care, both axes t and f being recip-

rocally constrained by the uncertainty relation Dt� Df = 1/2,

which means that the precision over one axis is inversely

proportional to the precision over the second axis.

Henceforth, the time localization of the switching events is

directly related to the temporal sliding window width Dt

used to perform the ‘‘instantaneous’’ Fourier transform at

time t. In our case, Dt * 10/f1 s, with a time step

dt = 112 ms. Theoretically, it might be possible to extract

the amplitude evolution of modes f1 and f2 by simply

picking up the horizontal lines centred on f1 and f2 in the

spectrogram. In practice, we will not use this technique, the

Fig. 1 Experimental setup. a Wind-tunnel principle; b cavity scheme
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Fig. 2 Square root of the power spectral density, normalized to 1, of

the LDV time series s(t). Incoming flow velocity Ue = 2.09 m/s,

aspect ratio R = 2. Two main modes emerge at f1 = 23.2 Hz and

f2 = 31.0 Hz. The other peaks are nonlinear combinations of f1 and f2
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temporal resolution being three times larger than the

slowest period T1 = 1/f1.

4 Mode-switching phenomenon in numerical

simulation

Experimentally, the origin of such a mode switching phe-

nomenon is not clearly understood yet. However, a 3D

direct numerical simulation, carried out in our group, may

bring some insights. The flow is assumed incompressible

ðr � v ¼ 0Þ and described by the Navier–Stokes equation

ov

ot
þr � vtvð Þ ¼ � 1

q0

rPþr � mrvð Þ;

where t is the time, q0 the uniform and constant density, P

the pressure and m the constant kinematic viscosity (iso-

thermal flow). The numerical method is similar to the one

proposed in the framework of natural convection flow

instability by Le Quéré et al. (1992) and Gadoin et al.

(2001), and further applied to our open cavity flow (Podvin

et al. 2006). Momentum equations are discretized follow-

ing a finite volume approach on staggered structured grid

with a second-order approximation in time and space.

Scalar variables are defined at cell centres whereas vecto-

rial variables are defined at cells boundaries. Advection

fluxes are calculated with a QUICK scheme (Leonard

1979) and the viscous terms are defined with an usual

second-order centred scheme. For stability reasons, the

viscous fluxes are discretized using an implicit method.

The incompressibility constraint ðr � v ¼ 0Þ is guaranteed

by a prediction/projection method, implying the resolution

of a Poisson equation for the pressure updating.

The domain of simulation is similar to the experimental

configuration shown in Fig. 1b. However, the spanwise

direction is considered periodic and the length of the

upstream cavity channel is reduced in order to save CPU

time. The length of the domain is 400 mm, the width

200 mm and the height 125 mm. The inlet is located at the

specific coordinate x0 = -110 mm, the x-origin being

located on the upstream edge of cavity. The inlet

conditions for the longitudinal velocity component are

fixed such that the flow rate Uq = 2.0 m/s. It corresponds to

the velocity profile of a laminar growing channel flow at

the specific coordinate x0, calculated in a 2D channel flow

simulation, which is in good agreement with the experi-

ment. The other velocity component gradients are equal to

zero. Usual nonsliding conditions are applied at the top and

bottom walls. The domain is covered with 256 cells in the

longitudinal direction, and 128 in the spanwise and normal

directions. The mesh is particularly refined close to the

walls and over the cavity, to well resolve upstream laminar

boundary and stress layers and the eddy structures gener-

ated in the shear layer.

The numerical simulation is carried out over a time

duration of 24.5 s, after the statistically converged flow has

been reached out. The power spectral density of the signal

picked up downstream of the cavity, at the same point of

measurement as the experimental one, with a sampling

frequency of fs = 454.5 Hz, is shown in Fig. 4. The shear

layer instability frequency is measured at f0 = 31.9 Hz,

close to f2 = 31.0 Hz. No other mode of oscillation is

Fig. 3 Spectrogram of the

signal. The horizontal axis is the

flowing time, the vertical axis

the frequency space. Power

spectral density is plotted as

grey levels, from dark for small

amplitude values to bright for

larger amplitude values. The

right inlet is the time-integrated

spectrogram
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Fig. 4 Power spectral density in the 3D direct numerical simulations

of the flow over an open cavity at the flow rate Uq = 2 m/s. Only one

spectral component is present in the spectrum
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however detected, meaning that the mode switching phe-

nomenon is absent from the simulation. The reason for the

discrepancy may teach us about the physical mechanism

involved. First of all, note that although the numerical flow

could be much more robust (with respect to environmental

noise) than the experimental flow, which could let no

chance to the other mode to develop, it remains that the

cavity recirculation flow should be able to initiate, in the

experimental flow as well as in the numerical one, strong

enough perturbations in the upstream corner of the cavity

to allow, at some time, the rise of the other mode. This is

however not what happens. We may also wonder about the

refinement of the mesh grid. But it appears that the highest

frequency f2, which should be the less well-resolved one

(since it is associated to smaller spatial structures), actually

is resolved by the code, while the missing frequency is the

lowest one f1. Henceforth, it is doubtful that the mesh grid

may be responsible for the lack of mode switching phe-

nomenon. Another possibility may lay in the numerical

QUICK scheme under use, that could overdamp one of the

two modes. In this respect, it may be useful to test a centred

scheme. A last possibility for the discrepancy may lay in

the transverse boundary conditions. They are rigid in the

experiment, while they are periodic in the simulations. As a

consequence, the recirculating secondary flows, in the

transverse direction, symmetrically to the medium plane, as

observed in the experiment, are absent in the simulations.

How such secondary flows could induce the mode

switching phenomenon is not obvious, but the possibility

cannot be a priori excluded. A forthcoming campaign of

simulations will be held with rigid boundary conditions, so

as to mimic the experimental conditions, and should

therefore bring more insights about the relevance of the

boundaries in the mode switching phenomenon.

5 Complex demodulation

In this section, we propose to analyse more quantitatively

the mode-switching phenomenon. It is necessary to

determine the instantaneous amplitude of each mode, at

any time in the experimental time series. This is done using

a complex demodulation technique on the basis of Hilbert

transform. The method first requires to band-pass filter the

signal around the spectral component under interest. This is

done using a (noncausal) Butterworth filter of order 4.

Mathematically, the Hilbert transform of a time-signal s(t)

is defined by the integral transform:

HfsðtÞg ¼ 1

pt
� sðtÞ; ð1Þ

where * is the convolution product. In the Fourier space, it

can equivalently write

F Hfsgf g ¼ �i; sgnðxÞ � FfsgðxÞ; ð2Þ

where F is the Fourier transform operator, and sgn(�) the

sign function. The Hilbert transform therefore simply

consists in rotating by -p/2 the positive part of the signal

spectrum (multiplication by -i = e-ip/2), by +p/2 its

negative part (multiplication by i = eip/2). The Hilbert

transform will therefore transform a cosine into a sine. As a

consequence, it is possible to define an analytical signal

w(t) by

wðtÞ ¼ sðtÞ þ iHfsgðtÞ � AðtÞ � ei/ðtÞ; ð3Þ

from which an amplitude A(t) and a phase /(t) can be

derived, as

AðtÞ ¼ wðtÞj j
tan /ðtÞ ¼ Imfwg

Refwg

(
ð4Þ

The Hilbert transform is applied to the signals s1(t) and

s2(t), obtained by band-pass filtering the LDV signal s(t)

around f1 and f2, respectively. The resulting amplitudes

A1(t) and A2(t), associated with s1(t) and s2(t), are plotted in

Fig. 5 for an arbitrary time interval, where the mode

switching phenomenon can be observed.

The mode-switching nature of the phenomenon is again

confirmed by plotting A2 with respect to A1 (Fig. 6). It

exhibits two compact clouds of points, one corresponding

to A1 saturating, A2 vanishing, the other to A2 saturating,
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(a) (b)Fig. 5 Amplitudes A1(t) (solid
line) and A2(t) (broken line) of

modes f1 and f2 in signals s1(t)
and s2(t), a with, or b without,

the carrier. The threshold

amplitudes A1 and A2 are

plotted as horizontal solid and

broken lines, respectively, in b
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A1 vanishing, with a more scattered cloud of points

around the anti-diagonal when modes f1 and f2 are

exchanging their stability, typical of an anti-correlated

behaviour.

6 Criterion of existence

Now, we would like to determine the existence ranges of

each mode f1 and f2. For that, it is necessary to define a

threshold value for the amplitude. A natural criterion is to

compare the instantaneous mode amplitude Ai(t) to the

time averaged mode amplitude Ai: For mode f1,

A1 ¼ 0:073; for mode f2, A2 ¼ 0:053: At a given time t,

the mode is considered present if AiðtÞ[ Ai; absent

unless. Defining ti as the integrated time over which the

mode fi is present in the signal si(t), we define the rate of

presence of the mode fi as gi = ti/T, where T is the overall

time of the signal. Following the criterion, it is found

g1 = 0.524, and g2 = 0.479.

Noting that g1 + g2 & 1.00, one may conclude that the

mode switching scenario is perfect, one mode being strictly

present when the other is absent—and reciprocally. In fact,

it appears that f1 and f2 are simultaneously present over

gtogether = 6.8% of the overall signal. It therefore follows

that both modes must also be simultaneously absent from

the LDV signal over a significant fraction of time, found to

be gnone = 6.5%. Henceforth, g1 and g2 also count common

events. In Fig. 7 is shown an example in which both modes

are seen simultaneously present in the signal (event of

stability exchange, f2 disappearing to the benefit of f1).

Another natural threshold value can be defined, based on

the mid-value Aic between the largest and the smallest

amplitude values:

Aic ¼
1

2
max

t
ðAiÞ þmin

t
ðAiÞ

� �
: ð5Þ

This criterion has the benefit to well distinguish the

existence range of a mode that would predominantly be

present in the signal, with some rare events where it

disappears. In this case, the mean amplitude Ai would be

close to the saturated value Ais, and even small

instantaneous fluctuations around Ais would enhance

artificial transitions from present to absent. Threshold

values are increased by +29% for mode f1, by +47% for

mode f2. It follows g1 = 0.376 (-29%) and g2 = 0.283

(-41%), gtogether = 0.15%, gnone = 34.2%. The disproportion

between gtogether and gnone is dubious. Actually, in Fig. 8 is

plotted the longest time interval, over which no mode

should be present in the signal, following this criterion.

This confirms that the criterion tends to overestimate the

rate of common absence, which therefore appears rather

irrelevant here.
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Fig. 6 Amplitude of mode 2 versus amplitude of mode 1, at any time
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Fig. 7 Time range over which both modes are simultaneously

present in the signal s(t), following the criterion based on the mean

amplitudes A1 and A2: Mean amplitudes are plotted as horizontal solid

line for A1 and broken line for A2: The common range is grey filled.

a Amplitudes A1(t) and A2(t) are shown; b signal s(t) is shown
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Another threshold value can be defined, when consid-

ering the amplitude distributions of modes f1 and f2 in

Fig. 9. Two maxima are separated by a local minimum.

The first maximum is the vanishing amplitude Aiv of mode

fi. The second maximum is the saturated amplitude Ais. The

transition between the vanishing and the saturated ampli-

tudes occurs when the amplitude passes through the local

minimum Aim, which can provide a new threshold

amplitude:

Aim ¼ min
Ai2½Aiv;Ais�

Ai: ð6Þ

If so, A1m = 0.060 (-18%), A2m = 0.050 (-6%). It follows

g1 = 0.598, g2 = 0.501, gtogether = 13.0%, gnone = 3.1%.

Figure 10 shows the longest event for which both modes

are simultaneously seen present in the signal. We will see

in Sect. 7 that a similar criterion can be used, based on the

system phase portrait.

Whatever criterion is used, g1 is always greater than g2,

already suggested by the PSD ratio between f1 and f2, and

the constraint g1 + g2 + gnone - gtogether = 1 is always

satisfied (see Table 1). The mean and maximum mode

lifetimes are given in Tables 2 and 3, respectively. Short

lifetimes are collected in Tables 4 and 5 for modes f1 and

f2. Lifetimes of common absence or presence are reported
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(a) (b)Fig. 9 Amplitude distribution

for (a) mode f1, (b) mode f2,

using the Hilbert transform filter
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Fig. 10 Longest time range over which both modes f1 and f2 are

detected in the signal s(t), following the threshold value defined by

Eq. 6

Table 1 Rate of existence g1 (mode 1) and g2 (mode 2), rate of

coexistence of both modes gtgh (gtogether), rate of absence of both

modes gnon (gnone), depending on the chosen threshold value (in %)

g1 g2 gtgh gnon

Mean value Ai 52.4 47.9 6.8 6.5

Mid-value Aic 37.6 28.3 0.1 34.2

Local minimum Aim 59.8 50.1 13.0 3.1

Table 2 Mean lifetimes for modes f1 and f2, depending on the chosen

threshold value

Ai Aic Aim

Dt1 (T1 units) 19.6 12.0 24.7

Dt2 (T2 units) 18.3 11.1 20.0
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in Table 6. Time intervals whose duration are less than two

basic oscillations may be considered as signal processing

artifacts. Whatever threshold value is used, such events

however represent less than 10% of the overall lifetimes for

mode f1 (Table 4), and not more than 13% for mode f2
(Table 5). From Tables 4, 5, and 6, the mean amplitude

seems to be the well adapted criterion here.

Depending on the criterion used, rates of existence

sensibly vary. This is a consequence of the fact that the

chosen threshold amplitude is to some extent arbitrarily

defined. Moreover, we are facing the intrinsic limitation

of any Fourier-based technique, where there exits a fun-

damental uncertainty over the time precision and where

windowing usually introduce oscillations. The Hilbert

transform, here based on band-pass filtered signals,

extracts amplitudes that never vanish completely, even

when one mode seems to be absent from the LDV signal.

One may therefore ask whether this could result from

some processing artifact. However, a similar behaviour is

observed in coupled complex Ginzburg–Landau equa-

tions, where two modes are similarly competing, and none

never totaly disappears. We have shown that none of the

criterions introduced here, although justified by some

aspects, looks fully satisfying, all being in some way

arbitrary. Each of them however tells us that the coexis-

tence or simultaneously absence of the two modes cannot

be excluded, not only during events where both modes are

exchanging stability, but also on reasonably long time

durations (a few periods of oscillations for instance in

Fig. 14a).

7 Phase space-based criterion

The phase space reconstruction is based on the singular

value decomposition (SVD) of the delayed data matrix S,

as proposed in Broomhead and King (1986). The SVD

technique is described in Appendix. Derivative-based

techniques would also generate an equivalent embedding

phase space (Gouesbet and Letellier 1994).

Another threshold amplitude for the mode existence,

similar to the one defined by Eq. 6, can be defined in the

reconstructed phase spaces of the band-pass filtered signals

s1(t) and s2(t). Let X be the matrix whose columns Xi are

the phase space dynamical variables (see Appendix for the

definition of X). Suppose that two columns of X, say X1 and

X2, are phase-quadratically correlated, as it is expected in

an oscillating phenomenon. Then, X1 is related to X2 as

would s1(t) be with respect to its first time-derivative _s1ðtÞ:
For the sake of simplicity, consider the sub-phase space

spanned by ðs1; _s1Þ: Time ranges where both the amplitude

and its time-variations are small will correspond to states

close to the origin of the phase space (zero amplitude, zero

derivative). On the contrary, time ranges over which the

mode f1 is present produce, in the signal s1(t), high

amplitude levels (with a carrier time-varying at a frequency

close to f1), that generate orbits of finite radius

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1ðtÞ2 þ _s1ðtÞ2

q
; with a significant dispersion if the

amplitude modulations are large (Fig. 11a, c), further

increased by the presence of noise. Between those two very

distinct clouds of points should stand a ‘‘switching’’ area,

associated with sharp amplitude falls (resp. rising) from the

saturated (resp. vanishing) amplitude to the vanishing

(resp. saturated) amplitude. Such front-like shaping in A1(t)

occurs over time intervals where f1 passes from being

present (amplitude close to its saturated value), to absent

(amplitude close to zero) in the signal (resp. from absent to

present). Plotting the fraction of points as a function of their

distance to the origin (Fig. 11b, d), it is observed two

maxima, one at rinf;1 ’ 0:14; the other at rsup;1 ’ 0:63 for f1.

Table 3 Longest lifetimes for modes f1 and f2, depending on the

chosen threshold value

Ai Aic Aim

Max Dt1 (T1 units) 408 238 454

Max Dt2 (T2 units) 509 211 511

Table 4 Nonrelevant lifetimes Dt1 for mode f1 depending on the

chosen threshold value

A1 A1c A1m

Min Dt1 (T1 units) 0.27 0.31 0.23

Fraction of Dt1 \ 2T1 6.3% 8.3% 9.7%

Table 5 Nonrelevant lifetimes Dt2 for mode f2 depending on the

chosen threshold value

A2 A2c A2m

Min Dt2 (T2 units) 0.16 0.55 0.14

Fraction of Dt2 \ 2T2 7.9% 12.5% 10.1%

Table 6 Time ranges over which both modes are either simulta-

neously present or absent from the signal

Ai Aic Aim

Max Dttogether (T1 units) 12.3 2.5 17.1

Max Dtnone (T1 units) 10.5 29.9 7.2

Dttogether (T1 units) 1.9 0.8 2.7

Dtnone (T1 units) 2.1 4.9 1.8

Fraction of Dttogether \ 2T1 62.2% 96.0% 46.9%

Fraction of Dtnone \ 2T1 56.9% 24.7% 64.3%
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The first maximum is associated with the vanishing

radius [when f1 is absent from s1(t)], the second maximum

to the saturated radius. In between stands a relative

minimum at r0,1 ^ 0.37, which may be considered as the

core of the transitory area, and may provide a new

threshold amplitude. Next, the phase portrait distance

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðtÞ � X1Þ2 þ ðX2ðtÞ � X2Þ2

q
; of a point at time

t with respect to the phase portrait centre, has to be com-

pared with r0,1. If r(t) [ r0,1, the mode is present in the

signal, at time t, and absent otherwise. Noting n1 the

number of points in the phase space that fulfil the criterion,

one can define the rate of presence of mode f1 in the signal

s(t) as g1 = n1/N, N being the overall number of points. The

same is done for f2, defining its rate of presence g2. One

finds, in its associated phase portrait, rinf,2 ^ 0.09,

rsup;2 ’ 0:51; and r0,2 ^ 0.30. Applying the criterion, it

comes g1 = 0.56 and g2 = 0.46. It is also found that both

modes are simultaneously present in the LDV signal over

7.3% of T, while they are simultaneously absent from the

signal over 6.0% of T. Rather surprisingly, the criterion

gives results closer to those obtained when using the mean

amplitude criterion, although it was expected to be more

similar to the threshold value defined by Eq. 6. Note that

the procedure may also introduce oscillations at 2x1 in r(t),

at least when X1(t) = q1(t)cos(x1t) and X2(t) =

q2(t)sin(x1t), with q1 = q2, which might usually be the

case (see Fig. 12).

8 Burst lifetime statistics

In what follows, the analysis is based on the threshold

value defined by the time averaged amplitude. A sequence

of events where both modes become simultaneously pres-

ent or absent from the signal s(t) is shown in Fig. 13 (grey
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Fig. 11 a Phase portrait of the

filtered signal s1(t), generated by

applying the SVD to s1(t), as

defined by Eq. 9. The two axes

are the first two columns X1 and

X2 of the matrix X, as defined by

Eq. 10. b Radius distribution in

the phase space. Each class of

radius covers a Dr = 0.01;

c idem to a, and d idem to b, for

mode f2

7 7.5 8 8.5 9 9.5
0

0.2

0.4

0.6

0.8

1

t (s)

r 1(t
) 

(a
rb

. u
ni

ts
)

Fig. 12 Radius in the phase space, defined as

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðtÞ � X1Þ2 þ ðX2ðtÞ � X2Þ2

q
; versus time, here for the

mode f1. Small amplitude, high frequency oscillations at 2f1, can be

seen on the slowly varying radius dynamics
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filled bands). The longest durations of simultaneous

absence or presence are shown in Fig. 14.

Both mode lifetime distributions exhibit an exponential-

like decay (Fig. 15), with a characteristic time duration

s1 = 650 ms for f1, s2 = 615 ms for f2. The mean lifetimes

are found to be Dt1 ¼ 795 ms for mode f1 (corresponding

to about 20 cycles of basic oscillations at f1), and

Dt2 ¼ 545 ms for mode f2 (corresponding to about 18

cycles of basic oscillations at f2). The longest lifetimes of

each mode is found to be of the order of 5 s.

Similarly, the common time of presence or absence

distributions are plotted in Fig. 16.

The successive n lifetimes {Dti
(n), n = 1,2…} of mode fi,

i = 1,2, are plotted with respect to the (n - 1)th lifetime in

Fig. 17. In Fig. 18 is plotted the recurrence time of a mode,

ie the elapsed time Ds(k+1) between two risings of the mode

fi in the signal with respect to Dsk. From Figs. 17, 18, a

deterministic law underlying the mode-switching phe-

nomenon does not clearly appear, and a phase space

analysis might help.

9 Phase space analysis

We now come back to the phase space reconstruction

introduced in Sect. 7. The SVD is now applied to the ori-

ginal signal s(t). It provides the matrix X defined in

Appendix. Using a Grassberger Procaccia algorithm to

estimate the phase space dimension (Grassberger and

Procaccia 1983), it is found that the correlation dimension

dynamics of the LDV signal s(t) is of the order of 4.2,

which means that the actual phase space dimension would

at most be 10. Consequently, the number of coordinates

required out of X is at most ten. The 2D projections of the

phase portrait, in the planes (X1,X2) and (X2,X3), are shown

in Fig. 19a, b, respectively. The phase portrait is composed

of a torus-like trajectory in a plane (almost) coplanar to the

plane (X2,X3), and exhibits transverse excursions in the X1

direction.

To gain insights, a Poincaré section (P) is defined by

P ¼ fX1;X3 2 R
2jX3 ¼ 0;X2\0g: ð7Þ
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Fig. 13 Sequence of events where both modes become either

simultaneously present or absent from the signal, (a) for the

amplitudes, (b) for the signal s(t). Such events are coloured in grey

bands. Left-hand and middle bands: both modes are present; right-

hand band: both modes are absent. The threshold mean amplitude is

shown as horizontal line in (a); solid for A1; broken for A2
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Fig. 14 Longest time of simultaneous (a) presence, (b) absence, of modes f1 and f2 in the signal, following the criterion based on the time

averaged amplitude
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The resulting Poincaré section is shown in Fig. 20. It

exhibits two intricated clouds of points, each corresponding

to the intersections of the (P) plane with either the orbits at

f1 or f2 (represented in two different colours). Points P1 and

P2 are the barycenters of the set of orbits associated with

the modes f1 and f2, respectively. Their coordinates, in the

10D reconstructed phase space, are:
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Fig. 15 Life time distribution

(a), (b) for mode f1, (c), (d) for

mode f2
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(a) (b)Fig. 16 Common time range

distributions of (a) presence or

(b) absence of both modes in the

signal. The threshold amplitude

is defined by the time-averaged

amplitude
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P1ð�18866;673;�31;�64;�13;74;37;�21;24;7:3Þ�10�3

P2ð�18780;509;�28;�15;�156;39;10;�22;�4;6Þ�10�3

Both barycenters are very close, which is coherent with

the fact that orbits corresponding to modes f1 and f2 are

closely intricate. In case there would exist two different

attractors, each associated with each mode of oscillations,

then the transition from one attractor to the other might be

very easy, their basin of attraction presumably being

intricate as well. In another case, the dynamics could

evolve over one unique attractor. From the Hilbert analysis

(see Fig. 7) and the power spectrum of Fig. 2, none mode

never completely disappears from the signal (background

level), since it can be seen from Fig. 15 that amplitudes

A1,2 = 0 are very unlikely. Therefore, the dynamics should

essentially evolve over a torus, whose section would most

of the time be pretty elliptic, since one of the two ampli-

tudes is usually small when the other is saturated. The

phase space trajectories would essentially be orbits cycling

along the torus, at the frequency of the strongest mode. At

some time, mode predominance is exchanging, and the

torus main extension would become the saturated ampli-

tude of the other mode, while orbits would now evolve at

the new frequency.

10 Conclusion

The self-sustained oscillations observed in open flows may

present a very rich phenomenology. In the case of a fluid

flowing above an open cavity, here at a moderate Reynolds

number (ReL ^ 14,000), for an aspect ratio R = 2, the

nonlinear competition between noncommensurable modes

of oscillations reveals to be essentially dominated by a

mode-switching scenario. It is however shown, following

any criterion introduced in this paper, that a non-negligible

fraction of time can be found, where both modes may

simultaneously be present in, or absent from the flow

oscillations.

Working in the phase space, it might be possible to

introduce another criterion based on a first-return map built

on the Poincaré section. Would the resulting symbolic

dynamics have any sense with respect to the mode-

switching phenomenon, it would be possible to define an

absolute criterion, whose time-precision would be at the

scale of the orbit duration (impact through the Poincaré

section). A deeper study of the symbolic dynamics, though

out of the scope of this paper, would therefore be interesting

to investigate, possibly revealing the mechanisms respon-

sible for the exchange of stability between the two modes.

The spatial flow structure is controlled by the length and

height of the cavity, and by the lateral (rigid) boundary

conditions (Faure et al. 2007). The later are suspected to

play a key role in the nonlinear mode competition observed

in the shear layer oscillations. Further investigations are

necessary. Hopefully, 3D direct numerical simulations of

the flow, in the condition of the experiment, should

advantageously help understanding the fine interaction

between the spatial structure dynamics, and the shear layer

time dynamics. It is known that modifying ReL will also

modify the excited mode frequencies in the shear layer,

their relative amplitude in the spectrum, and modifies their

rates of existence as well as the fraction of common times

(Faure et al. 2005).

−20 −19.5 −19 −18.5 −18 −17.5 −17

−1.5

−1

−0.5

0

0.5

1

X
1

X
2

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1.5

X
2

X
3

(a) (b)Fig. 19 Phase portrait of s(t),
(a) in the (X1,X2) projection of

the phase space (see Appendix

for a description of matrix X),

(b) in the (X2,X3) projection of

the phase space

−1 0 1 2
−0.5

0

0.5

1

1.5

−0.5

0

0.5

1

1.5

X
1

X
2

−1 0 1 2

X
1

X
2

(a) (b)
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11 Appendix: Phase portrait based on a singular value

decomposition

The method for reconstructing an embedding phase space

is based on the singular value decomposition (SVD) of the

matrix S of the delayed data, built from the LDV signal s(t)

as

S ¼

sðt1Þ sðt2Þ . . . sðtmÞ
sðt2Þ sðt3Þ . . . sðtmþ1Þ

..

.

sðtN�mþ1Þ sðtN�mþ2Þ . . . sðtNÞ

0
BBB@

1
CCCA: ð8Þ

Matrix S is of size m 9 N. Times tk = t1+k dt, k 2 N; are

defined with respect to the initial acquisition time t1, with

dt = 0.65 ms. Henceforth, one period of the basic cycle

contains about m = 70 points. The SVD procedure then

identifies the singular vectors of the matrix S (and its

associated singular values), which correspond to the proper

‘‘deterministic’’ axes of the matrix. The singular vectors are

ranked as columns of a matrix VS such that

S ¼ US � DS � VT
S ; ð9Þ

where DS is the m 9 N matrix of the singular values (ranked

from the largest to the smallest one). Note that S is most

usually not a square matrix, and therefore most of its singular

values vanish. In fact, N� m, and therefore (N - m) � 1

singular values are equal to zero. Consequently, it has no

sense to compute all the singular values and singular vectors

of S, since only m of them are dynamically relevant. The

time-delayed system S is then projected onto its singular

basis, namely, VS; through the matrix product S � VS: The

matrix VS being orthogonal, it follows that VT
S � VS is the

identity matrix, and therefore S � VS ¼ US � DS:Henceforth,

the searched out phase space may be spanned by the columns

of the matrix X, defined as

X ¼ US � DS: ð10Þ

References

Broomhead D, King G (1986) Extracting qualitative dynamics from

experimental data. Physica D 20:217–236

Faure TM, Debesse P, Lusseyran F, Gougat P (2005) Structures

tourbillonnaires engendrées par l’interaction entre une couche
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