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ABSTRACT

The enhancement of high altitude drone endurance com-
pels to design very flexible high aspect ratio composite
airframe vulnerable to destructive fluid/structure interac-
tion like flutter or torsional divergence. Aeroelastic tai-
loring, a specific configuration of laminated composite
layup, appears to be a promising way to increase criti-
cal speed without being at the expense of weight balance.
The present work presents an aeroelastic reduced order
model suitable for the non linear anisotropic behavior of
this kind of composite wing and able to quickly compute
critical speed like flutter with the intent of using it in an
optimisation loop. In this regard, particular attention is
devoted to computational efficiency using optimised open
source solver like MUMPS and ARPACK.

1 INTRODUCTION

Recent progress made in the field of solar cells, en-
ergy storage and composite materials pave the way to a
new concept of aircraft, namely High Altitude Pseudo
Satellites (HAPS). Among them, a particular type of so-
lar or/and hydrogen powered High Altitude Long En-
durance (HALE) Unmanned Aerial Vehicles (UAV) aims
to meet a virtually infinite endurance. To achieve this
far-reaching goal, because of the low on-board power,
aerodynamic and structural performances are stretched
to their limits. This results, on the aerodynamic side,
in high-aspect ratio wing optimising the lift-to-drag ra-
tio and, on the structural side, in lightweight very flexible
composite airframe. The main drawback of this particu-

lar design is its vulnerability to destructive fluid/structure
interactions like torsional divergence and flutter. Classi-
cal solutions designed to further aeroelastic critical speed
mostly rely on the stiffening of the airframe or the adjust-
ment of mass distribution. Both options are detrimental
to mass balance which is a key feature of HAPS. In that
context, alternative solutions should be explored, among
these are aeroelastic tailoring discussed below.

The nature of a fluid/structure interaction strongly de-
pends on the system characteristics. Different approxi-
mations are made depending on the motion of structure
relatively to the fluid. In order to quantify that, dimen-
sionless numbers are used. In our case, the degree of
fluid/structure coupling is characterised by the reduced
frequency fr = Tf /Ts with Tf the period of fluid mo-
tion and Ts the period of structure motion. Solar pow-
ered HALE UAV, because of their large wingspan and
their low flight speed (for instance 75 m wingspan and
35 km/h for NASA Helios UAV), are characterised by
a reduced frequency near 1. In fact, it means that both
dynamic are tightly linked. Therefore, high fidelity sim-
ulation of this kind of fluid structure/interaction with a fi-
nite volume method coupled with a finite element method
still leads to a prohibitive computational cost. Indeed,
it implies an unsteady resolution with a very small time
step of both problem (fluid and structure) and the trans-
fer between fluid and solid of position and velocity infor-
mations. Consequently, aeroelastic reduced order model
are still widely used, especially for Very Flexible Air-
craft (VFA). The large displacement and rotation encoun-
tered by a very flexible wing associated with a low flight
speed make the aeroelastic behavior all the more difficult
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to simulate because of the induced geometrical non lin-
earities and the fluid motion instationarities.

A relevant illustration of the need for an accurate mod-
elling of theses phenomena is the accident of the Helios
UAV which occurred on the 26th June 2003 due to a large
deflection and rotation of the wing leading to an unstable
pitch oscillation [1]. To meet this need, several reduced
order aeroelastic model have been developed. For com-
putational efficiency, most of them are based on invis-
cid, incompressible potential flow theory coupled with
beam or plate theories. We could mention computa-
tion code NANSI (Nonlinear-Aerodynamics/ Nonlinear-
Structure Interaction) [2] which combines an Unsteady
Vortex Lattice Method (UVLM) and a nonlinear beam
theory. The UVLM is particularly useful in case of low-
aspect-ratio wing or delta wing because the method is
able to predict 3D effects. Another solution is proposed
by Murua in SHARP program (Simulation of High As-
pect Ratio Planes) [3] using UVLM with a displacement
based geometrically exact beam theory. Some models
are dedicated to high-aspect-ratio wing like Drela’s pro-
gram ASWING [4]. This VFA conception tool combines
a nonlinear isotropic beam formulation with an unsteady
lifting line theory. More recently, Shearer and Ces-
nik have developed a Matlab toolbox called UM/NAST
(University of Michigan/ Nonlinear Aeroelastic Simula-
tion Toolbox) [5] made up of a strain-based geometri-
cally nonlinear beam formulation linked with a finite state
two-dimensional incompressible flow aerodynamic the-
ory proposed by Peters and al [6]. A similar formulation
is used by Ribeiro in the Matlab toolbox Aeroflex [7].

Because aeroelastic tailoring exploits the anisotropy of
composite materials, a suited reduced order model must
take this anisotropy into account. This capability re-
sides in the Matlab toolbox proposed by Patil and Hodges
called NATASHA (Nonlinear Aeroelastic Trim and Sta-
bility of HALE Aircraft) [8] coupling an intrinsic beam
formulation with Peters’ theory.

The present paper presents an efficient open source im-
plementation of an aeroelastic reduced order model cou-
pling a nonlinear anisotropic beam theory with unsteady
two-dimensional aerodynamic Peters’ model. Computa-
tion speed and accuracy of this implementation is then
assessed using widely used aeroelastic test cases.

2 AEROELASTIC REDUCED ORDER
MODEL

The high aspect ratio assumption gives us the opportunity
to neglect tridimensional effects and thus to use a strip
theory which can be easily linked to a beam formulation.

This implementation can be done in two different
ways:

• A loose coupling consisting in defining the aerody-
namic loads to apply on the beam in accordance with

position and speed parameters extracted from the
last structural calculation. This method is easy to
implement and is well suited for modular architec-
ture like, for instance, the wind turbines conception
software FAST from the NREL [9]. However, it also
has its drawbacks like the inability to perform cou-
pled eigenvalue analysis or some convergence issues
for nonlinear Newton-Raphson algorithms (aerody-
namic loads are not taken into account into the Jaco-
bian matrix). It also implies in our ranges of reduced
frequencies a very small time step.

• A tight coupling done by integrating aerodynamic
loads directly into the weak formulation of the beam
theory. This approach is much more complex and
is not really adapted to modular architecture but al-
lows to overcome the main drawbacks of a loose
coupling. Indeed, the most interesting application
is the possibility to determine, for a particular flow
velocity, the aeroelastic modes of the wing about a
steady sate, namely frequencies, modal shapes and
damping factors. The latter is a key parameter for
our study because it defines the limit between stable
and unstable speed and thereby provide the flutter
boundary. Concomitantly, a zero-frequency mode
for a given flow velocity indicates torsional diver-
gence speed overrun.

Consequently, the tight coupling has been chosen for our
toolbox.

2.1 Aeroelastic tailoring

Aeroelastic tailoring consists in exploiting laminate com-
posite anisotropy by setting a proper layup. For most ap-
plications, a laminate layup presents a mirror symmetry
with respect to its middle plane. If we consider a lami-
nate plate of unidirectional (UD) plies, the layup [-45°,
0°, 45°, 90°, 90°, 45°, 0°, -45°], with angular values rep-
resenting fiber orientation in each ply, presents a mirror
symmetry. The aim of this type of symmetry is to dis-
sociate membrane behavior (inplane loadings imply in-
plane displacements and vice versa) from bending behav-
ior. It is especially useful to avoid the warping of a hot
polymerised laminate plate during cool down. Another
common rule concerning the UD plies orientation is to
set balanced layup, namely to put for instance as many
-45° plies as 45° plies. It is meant to avoid coupling be-
tween the different bending behavior. The true principle
of aeroelastic tailoring is to ignore these rules, thus allow-
ing coupling between the different behaviors of the lam-
inate. It mainly consists in creating a link between the
bending and the warping of the laminate. On the aerody-
namic side, it induces the coupling of the bending due to
lift forces and the twisting of the wing which determines
the local Angle of Attack (AoA). Thus, the aeroelastic

2



Figure 1: Principle of feedback loop induced by aeroe-
lastic tailoring

tailoring is a way of establishing a feedback loop on the
aeroelastic behavior of a very flexible aircraft (figure 1).

2.2 Geometrically exact beam theory
In that context, it is essential to ensure a proper modelling
of the laminate anisotropy and geometrical non linearity.
For this purpose, the choice fell on an open source tool
named GEBT (Geometrically Exact Beam Theory) devel-
oped by Yu and Blair [10] designed for composite slender
structures under large deflections and rotations, assuming
the strains to be small. This tool coded in Fortran 90/95
implements a mixed variational formulation based on ex-
act intrinsic equations for dynamics of moving beams de-
veloped by Hodges [11].

The exact intrinsic equations for dynamics are derived
from Hamilton’s weak principle asymptotically devel-
oped along the beam axes:∫ t2

t1

∫ L

0

[
δ (K−U)+δW

]
dx1dt = δA (1)

where t1 and t2 are arbitrary fixed times, K and U are
the kinetic and strain internal energy, respectively, δ is
the usual Lagrangian variation for a fixed time, δW is the
virtual work of applied loads and δA the virtual action on
the same period. The resulting formulation is detailed in
Hodges [11].

The main strength of this method compared to classi-
cal displacement based formulation is to avoid the depen-
dency from a coordinate system (intrinsic nature) for the
position and rotation parameters. Kinematical and con-
stitutive relations are then added to the weak formulation
with Lagrange multipliers (mixed nature). The resulting
formulation allow a finite element implementation with
very simple shape functions (constant or linear). Accord-
ing to Hodges [12], we defined three coordinates systems
(figure 2):

• a unique global body attached frame a (~xa,~ya,~za)
moving with a given linear and angular velocity
~va and ~ωa in an inertial frame and consistent with
flight mechanics conventions (~xa pointing towards,
~ya pointing the right wing and ~za pointing down-
wards).

Figure 2: structural frames definition

• at least one undeformed beam frame b (~xb,~yb,~zb)
fixed in frame a: ~xb is tangent to the reference line
of the undeformed beam. In our case, a frame b is
defined for each section of the wing with a different
dihedral or/and wing-sweep.

• a deformed beam frame B (~xB,~yB,~zB) for each beam
element: ~xB is tangent to the deformed beam refer-
ence line and points to the right,~yB has a chordwise
direction and points the upstream flow and~zB com-
pletes the triad.

Direction cosine matrix describing the rotation be-
tween frames are defined using Rodrigues parameters
θi = 2ei tan(α/2) with α the magnitude of the rotation
about a unit vector~e:

~~C =

[
1− (1/4)~θ T~θ

]
~~∆− θ̃ +(1/2)~θ T~θ

1+(1/4)~θ T~θ
(2)

with~~∆ the identity matrix and the tilde notation defin-
ing a matrix using the following identity for any vector
~w:

θ̃~w = ~θ ∧~w (3)

Fundamentals unknowns of this formulation are the
displacement ~ua and the Rodrigues parameters ~θa in
frame a, the internal forces and moments ~FB and ~MB in
frame B and the linear and angular momenta ~PB and ~HB
in frame B. These unknowns are linked to the weak for-
mulation with the following expressions:{

~PB
~HB

}
=

{
∂K
∂~VB
∂K

∂~ΩB

}
=~~I
{

~VB
~ΩB

}
(4)
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{
~FB
~MB

}
=

{
∂U
∂~VB
∂U

∂~ΩB

}
=
~~S
{

~γ
~κ

}
(5)

with ~VB and ~ΩB the linear and angular velocity in the
inertial frame developed in frame B, ~γ and ~κ the strains

and curvatures developed in frame B,~~I is the mass matrix

and ~~S the stiffness matrix.
The anisotropic nature of the beam is concentrated in

Eq. (5). ~~I and ~~S matrix are the cross sectional prop-
erties of the beam and could be determined by various
means. Proprietary program VABS [13] is used in [10].
The present work uses a 3D finite element reduction done
with the open source solver Calculix [14] detailed in [15].
Eqs (4)-(5) are expanded below in frame B:

γ11
2γ12
2γ13
κ1
κ2
κ3


=


S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66





F1
F2
F3
M1
M2
M3


(6)



P1
P2
P3
H1
H2
H3


=


µ 0 0 0 µxm3 −µxm2
0 µ 0 −µxm3 0 0
0 0 µ µxm2 0 0
0 −µxm3 µxm2 i22 + i33 0 0

µxm3 0 0 0 i22 −i23
−µxm2 0 0 0 −i23 i33





V1
V2
V3
Ω1
Ω2
Ω3


(7)

with Si j the coefficients of the flexibility matrix, µ the
mass per unit length, xm2, xm3 the coordinates of the mass
center about respectively~yB and~zB, i22 the mass moment
of inertia about~yB, i33 the mass moment of inertia about
~zB and i23 the product of inertia.

Dividing a beam into N elements with the starting node
of the ith element numbered as i and the ending node
numbered as i+1 and using linear or constant shape func-
tion for the unknowns, the initial weak formulation leads
to:

N

∑
i=1

{
δ~uT

i
~f−ui

+δ~uT
i+1

~f+ui
+δ~ψT

i
~f−ψi

+δ~ψT
i+1

~f+ψi
+δ~FT

i
~f−Fi

+δ~FT
i+1

~f+Fi
+δ ~MT

i f−Mi
+δ ~MT

i+1+1
~f+Mi

+δ~PT
i
~fPi + δ ~HT

i
~fHi

}
= δ~uT

N+1
~̂FN+1+δ~ψT

N+1
~̂MN+1−δ~FT

N+1~̂uN+1−δ~FT
N+1

~̂θN+1

−δ~FT
N+1~̂uN+1−δ~uT

1
~̂F1−δ~ψT

1
~̂M1 +δ~FT

1 ~̂u1 +δ ~MT
1
~̂θ1

(8)

with δ~u the virtual displacement, δ~ψ the virtual rota-
tion, (̂) the boundary conditions and:

~f±ui
= ±~~CT~~Cab~Fi−~f

±
i

+∆Li
2

[
ω̃a

~~CT~~Cab~Pi +
˙

~~C
T~~C

ab
~Pi

]
(9)

~f±ψi
= ±~~CT~~Cab ~Mi−~m

±
i + ∆Li

2

[
ω̃a

~~CT~~Cab~Hi

+
˙

~~C
T~~C

ab
~H i+

~~CT~~Cab
(

Ṽi~Pi− (ẽ1 + γ̃i)~Fi

)]
(10)

~f±Fi
=±~ui−

∆Li

2

[
~~CT~~Cab (~e1 +~γi)−~~Cab~e1

]
(11)

~f±Mi
=±~θi−

∆Li

2

(
~~∆+

θ̃

2
+
~θi~θ

T
i

4

)
~~Cab~κi (12)

~fPi =
~~CT~~Cab~Vi−~vi− ω̃a~ui−~̇ui (13)

~fHi =
~Ωi−~~Cba~~C~ωa−~~Cba

~~∆− θ̃i/2

1+~θi~θ T
i /4

~̇θi (14)

with~e1 =
(

1 0 0
)T , ~~C the matrix direction cosines be-

tween frame b and B, ~~Cab the matrix direction cosines

between frame b and a, ~~Cba =
(
~~Cba
)T

, ∆Li the length

of the ith element and ~f
±
i , ~m

±
i the discretised distributed

forces and moments defined by:

~f
−
i =

∫ 1

0
(1−ξ )~fa∆Lidξ ; ~f

+

i =
∫ 1

0
ξ~fa∆Lidξ (15)

~m
−
i =

∫ 1

0
(1−ξ )~ma∆Lidξ ; ~m

+
i =

∫ 1

0
ξ~ma∆Lidξ (16)

with ~fa and ~ma the distributed forces and moments.
From Eqs (9)-(16), subscripts a, b or B referred to the
development frame. Derivations (̇) are made in the iner-
tial frame.

The resulting nonlinear system of 18N +12 equations
consists in

• 12(N−1) equations associated to intermediate
nodes:

~f+ui
+~f−ui+1

=~0; ~f+ψi
+~f−ψi+1

=~0;

~f+Fi
+~f−Fi+1

=~0; ~f+Mi
+~f−Mi+1

=~0

• 12 equations associated to the starting node:

~f−u1
− ~̂F1 =~0; ~f−ψ1

− ~̂M1 =~0;

~f−F1
−~̂u1 =~0; ~f−M1

− ~̂θ1 =~0

• 12 equations associated to the ending node:

~f+uN
+ ~̂FN+1 =~0; ~f−ψ1

+ ~̂M1 =~0;

~f−F1
+~̂u1 =~0; ~f−M1

+ ~̂θ1 =~0

• 6N equations associated to the elements:
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~fPi =
~0; ~fHi =

~0

The corresponding 18N +12 unknowns are ~ui, ~θi, ~Fi, ~Mi
for each node and ~Pi and ~Hi for each element. Bound-
ary conditions are prescribed to boundary nodes, either
in displacement/rotation or in force/moment.

This formulation is so far purely structural. The aero-
dynamic part of the reduced order model will thus be in-
jected into it throughout distributed forces and moment
~fa and ~ma.

2.3 Finite state induced flow model

As required by the typical reduced frequencies of VFA,
a two-dimensional unsteady aerodynamic model must be
used [16]. Because of the low Mach number and the rela-
tively high Reynolds number (order of magnitude of 106)
the choice fell on inviscid potential flow theories. Many
of them rely on Wagner formulation in time domain [17]
and Theodorsen theory [18] in frequency domain. The
latter is suitable for computing flutter speed but implies
the use of iterative loop like the so called p-k method. In-
deed, aerodynamic loads depends on reduced frequency
through Theodorsen function which, in is turn, is a func-
tion of velocity. To compel with computation needs, a
more suitable type of method has been developed derived
from the latter namely finite state approximations [19].
Instead of modelling shed wake effect with Theodorsen
function, finite state approximation computes it with a
number NS of states resolved from a set of NS Ordinary
Differential Equations (ODE) which could be solved at
the same time as the non linear system of the beam for-
mulation. The resultant equations gives convergence to
both Theodorsen and Wagner functions.

A widely used finite state approximation for VFA or
rotor blade aeroelasticity is the method developed by Pe-
ters et al. [6]. This formulation is implemented in our
toolbox with the following aerodynamic loads:

L = πρb2 (ḧ+Uα̇−baα̈
)

+2πρUb
[

ḣ+Uα +b
(

1
2
−a
)

α̇−λ0

]
(17)

M = b
(

1
2
+a
)

L

−πρb3
[

1
2

ḧ+uα̇ +b
(

1
8
− a

2

)
α̈

]
(18)

with L the linear lift, M the linear moment around a ref-
erence point F , ρ the air density and U the flow velocity.
The semi-chord b, the height h, AoA α and the distance
a between the point F and the semi-chord are detailed in
figure 3.

The induced-flow velocity λ0 is approximated using NS

Figure 3: Airfoil parameters

induced-flow states λ1,λ2, . . . ,λNS by:

λ0 ≈
1
2

NS

∑
n=1

bnλn

where the bn are found in [20] by the least-squares
method. The induced-flow dynamics then are derived
from the assumption that the shed vorticity stay in the
plane of the airfoil and travel downstream with the same
velocity as the flow. ~λ is a column matrix containing
the values of λn determined using a set of NS first-order
ODEs [20]:

~~A~̇λ +
U
b
~λ =

[
ḧ+U θ̇ +b

(
1
2
−a
)

θ̈

]
~c (19)

Matrix ~~A is defined by:

~~A = ~~D+ ~d~bT +~c~dT +
1
2
~c~bT (20)

where

Dnm =


1
2n n = m+1
− 1

2n n = m−1
0 n 6= m±1

(21)

bn =

{
(−1)n−1 (NS+n−1)!

(NS−n−1)!
1

(n!)2 n 6= NS

(−1)n−1 n = NS
(22)

dn =

{
1
2 n = 1
0 n 6= 1

(23)

cn =
2
n

(24)

The aerodynamic model adds NS equations for
each member, the coupled aeroelastic system contains
(18+NS)N + 12 equations and the same number of un-
knowns, providing that structural unknowns are com-
pleted with N×NS induced-flow states λni . Hereinafter
the system of equations will be written as:

F (~X , ~̇X) =~0 (25)

5



Figure 4: Flow frame definition

2.4 Fluid/structure integration
Aerodynamic loads directions are defined relatively to
the orientation of the wind ~W . According to that
point, we defined a forth type of frame, namely a flow
frame (~xF ,~yF ,~zF) consistent with two-dimensional aero-
dynamic conventions. This orthonormal triad of unit vec-
tor is defined as follow (figure 4).

~xF =−~W

The lift forces directed by~yF is normal to the wind and
to the deformed wing surface:

~yF =
~xB∧~xF

‖~xB∧~xF‖

The aerodynamic moment direction ~zF complements
the orthonormal triad of unit vectors:

~zF =~xF ∧~yF

Using these definitions, the tight coupling requires to
link aerodynamic and structural unknowns. We defined,
under the assumption that wind direction and velocity are
constant in time or quasi-steady:

• α the local AoA, α ∈]−90°,90°[

α = arcsin(~yB.~yF) (26)

• β the local yaw angle, β ∈]−90°,90°[

β = arcsin(~yB.~zF) (27)

• U the local flow velocity

U =U∞ cosβ (28)

with U∞ the upstream flow velocity.

• The time derivatives α̇ , α̈ , ḣ, ḧ:

α̇ = ~Ωa.~zF =
(
~~CT~~Cab~ΩB

)
.~zF (29)

α̈ ' ~̇Ωa.~zF (30)

ḣ =−~Va.~zF =−
(
~~CT~~Cab~VB

)
.~yF (31)

ḧ'−~̇Va.~zF (32)

Then, unsteady aerodynamic loads, considered con-
stant within each element, are injected in distributed
beam loads as:

~fa = L~yF (33)
~ma = M~zF (34)

using Eqs (26)-(32) to substitute aerodynamic unknowns
with structural ones.

2.5 Flutter speed computation
The formulation described in section 2 permits different
applications

• Study nonlinear transient dynamic behavior using a
time marching scheme;

• Study nonlinear steady-state dynamic behavior by
neglecting all the time derivatives;

• Realise an eigenvalue analysis of small motion
about a steady-state by linearising about it.

One of the main advantage of the tight coupling is the
ability to compute aeroelastic modes. In that case, the
solution vector is written:

~X (t) = ~X + ~̌X(t) (35)

with ~X the steady-state solution and ~̌X(t)� ~X . As a
results in Eq. (25) and performing a Taylor expansion, the
system becomes, keeping first order terms:

F (~X + ~̌X(t), ~̌̇X) = F (~X ,~0)+
∂F

∂ ~̌X
~̌X +

∂F

∂
~̌̇X

~̌̇X =~0 (36)

assuming that F (~X ,~0) = ~0 (steady-state solution)
Eq. (36) becomes:

∂F

∂ ~̌X
~̌X +

∂F

∂
~̌̇X

~̌̇X =~0

For an eigenvalue analysis, we assume that:

~̌X(t) = X̃0eνt (37)
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It gives us the following Generalised Eigenvalue Problem
(GEP): (

∂F

∂ ~̌X
+ν

∂F

∂
~̌̇X

)
X̃0 =~0 (38)

By analogy with classical dynamic resolutions, ∂F

∂ ~̌X

refers to a stiffness matrix ~~K and ∂F

∂
~̌̇X

to a mass matrix

~~M. They must not be confused with stiffness matrix ~~S

and mass matrix~~I defined in section 2.2.
Because of the use of Lagrange multiplier inherent to

the geometrically exact beam theory and the addition of
induced-flow ODE, this GEP is real and non-symmetric.
Neither stiffness nor mass matrix is symmetric positive
semi-definite, thus our GEP requires a direct transforma-
tion into a Standard Eigenvalue Problem (SEP) :

~~K−1 ~~MX̃0 =−
1
ν

X̃0 (39)

Direct inversion of ~~K is avoided using the resolution of
a linear system :

~~K~V =~Z (40)

with ~V = ~~K−1 ~~MX̃0 and ~Z = ~~MX̃0

Because we only need the computation of a few eigen-
values corresponding to the lower frequencies aeroelastic
modes, the SEP is resolved using the Implicitly Restarted
Arnoldi Method (IRAM) implemented into open source
ARPACK program (ARnoldi PACKage) [21]. Matrices
are stored in coordinate list sparse format (COO). In or-
der to propose a fully open source solution, the sparse di-
rect linear solver required by Eq. (40) is MUMPS (MUl-
tifrontal Massively Parallel sparse direct Solver) [22], re-
placing HSL (Harwell Subroutine Library) MA28 library
initially used in GEBT program [10]. A significant pro-
portion of computation time comes from the resolution
of Eq. (40), then special attention is devoted to optimise
the configuration of MUMPS. Before the resolution of
the SEP, rows and columns are reordered using software
package Scotch and are scaled. The strategy followed
in our toolbox consists in relying on well optimised and
maintained Fortran open source libraries.

Induced-flow ODEs [6] add purely real eigenvalues to
the initial structural problem with relatively small mag-
nitude which are not associated with aeroelastic modes.
Because the SEP resolved is the invert of the initial GEP
and to avoid induced-flow eigenvalues, modes of interest
correspond to the eigenvalues with the largest imaginary
part. Then, replacing complex eigenvalue ν with a+ ib
in Eq. (37), unstable modes are identified when a positive
value of a is found. Considering that, a Python routine is
used to find the lowest flow velocity associated with an
unstable mode corresponding to the flutter speed.

3 VALIDATION TEST CASES

Besides tests conducted to validate the homogenisation
step [15, 23], present section intends to prove both accu-
racy and speed of our toolbox using widely used aeroe-
lastic test cases, namely the Goland wing [24] and the
Patil wing [25]. The first is universally used among liter-
ature and the second is more appropriate to our program
because of its high-aspect-ratio. Unfortunately, both of
them concern isotropic wing since there is no common
anisotropic test case among the literature.

Concerning the speed evaluation, tests are conducted
on a laptop PC (CPU : Intel® Core™ i5-4210H; RAM :
8GO; OS : Ubuntu 17.10) and compare the freely avail-
able toolbox Aeroflex used with Matlab R2017b with the
present program compiled using GFortran 7.2 runing on
a single core.

The Python routine uses a dichotomy to find the low-
est flow velocity associated with an unstable mode. Ac-
cording to data from Table 1 and considering an isotropic
case, wing characteristics can be directly inserted into
mass and flexibility matrix skipping the homogenisation
step, the reference point F is taken at the elastic center :

~~S−1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1/GJ 0 0
0 0 0 0 1/EIG2 0
0 0 0 0 0 1/EIG3



~~I =


µ 0 0 0 0 µv
0 µ 0 0 0 0
0 0 µ −µv 0 0
0 0 −µv i11 0 0
0 0 0 0 0 0

µv 0 0 0 0 i11


First of all, a convergence of the undeformed Goland

wing flutter speed relatively to N and Ns parameters are
realised (figure 5). It appears that a reasonable value for
N start from 6, parameter NS shows good results from

4. Because of the factorial entering into definition of ~~A
(Eq. (20)) and~b (Eq. (22)), Ns is limited to 8 in order to
avoid roundoff errors and ill-conditioned matrices.

At the same time, computation speed is assessed on
figure (6). The search interval of the dichotomy routine
is set between 10 and 400 m/s with a precision of 10−2

m/s. The result is found in about 15 iterations, each of
them corresponding to the resolution of a particular GEP.
According to figure 6, computation time seems to be in
the order of O(N), paving the way for complex airframe
simulations.

By comparison, Aeroflex with Ns = 4 takes 4.8s if
N = 2, 98.8s if N = 10 and 751.1s if N = 20. Several
reasons could explain the big gap between both program,
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Table 1: Characteristics of Goland and Patil wings

Goland [24] Patil [25]
Semi-span L m 6.096 16
Chord 2b m 1.8288 1
Mass per unit length µ kg/m 35.71 0.75
Elastic axis (from leading edge) % chord 33 50
Center of gravity (from leading edge) % chord 43 50
Distance between CG and EA v m 0.18288 0
Bending stiffness (span-wise) EIG2 N.m2 9.77×106 2.104

Bending stiffness (chord-wise) EIG3 N.m2 / 4.106

Torsional stiffness GJ N.m2 0.99×106 1.104

Mass moment of inertia around e.a. i11 kg.m 8.64 0.10

Figure 5: Convergence tests for N and Ns parameters

among them the use of sparse matrix versus dense matrix
or the use of compiled language (Fortran) versus inter-
preted language (Matlab).

Then the flutter speed and frequency are computed
at sea level (ρ = 1.225kg.m−3) and at 20000 f t (ρ =
0.6526kg.m−3) using N = 10 elements and NS = 6
induced-flow states and compared to literature. Results
are presented in Table 2.

Results show a good agreement with other strip theory
reduced order models whereas UVLM based models pre-
dict a higher critical speed because of three-dimensional
effects. A more appropriate test case is the Patil high-
aspect-ratio wing whose characteristics are detailed in Ta-
ble 1. Besides undeformed wing flutter speed assessment,
flutter speed is also calculated about the wing deformed
by the lift compensating its own weight (aircraft AoA is
iteratively modified to compensate the weight at flutter
speed). Both simulations are made using N = 10 and
NS = 6 and demonstrate also a good agreement (Table 3).
Computation time with a search interval of 1 to 100 m/s
and a precision of 10−2 m/s is 0.35s for the undeformed
wing and 3.22s for the deformed wing (longer because of

the iterative aircraft AoA adjustment).

4 CONCLUSION

Design challenges induced by HAPS in terms of aeroe-
lastic performances show the need for an accurate re-
duced order model able to simulate nonlinear behavior
of an anisotropic high-aspect-ratio wing. The present
work presents a solution based of the geometrically exact
beam theory coupled with a two-dimensional unsteady fi-
nite state aerodynamic model implemented into an open
source solver. Accuracy of flutter speed computation on
both undeformed and deformed wing has been demon-
strated using common aeroelastic test cases. Aeroelas-
tic tailoring, a composite material technology designed
to further flutter speed without being detrimental to mass
balance, requires the use of an optimisation loop for
which flutter speed computation time is a key feature.
Tests conducted using different parameters show that the
present program fully meets this requirement, thanks to
the use of optimised Fortran open source computation li-
braries.

8



Figure 6: Goland flutter speed computation time (dichotomy interval:[10,400] m/s, precision: 10−2 m/s)

Table 2: Goland wing flutter speed and frequency

program sea level 20000 f t
speed (m/s ) frequency (rad/s) speed (m/s ) frequency (rad/s)

present (N = 10; NS = 6) 136.5 70.3 174.9 69.0
Goland [26] 137.2 70.7 - -
NATASHA[25] 135.6 70.2 - -
UM/NAST[27] 136.2 70.2 174.9 68.1
SHARP[3] 165 69 - -
Aeroflex[7] 137.0 70.8 177.0 69.2
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