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Abstract This experimental study reports flow devel-

opments inside a parallelepipedic cavity of variable shape

and dimensions. That flow is generated by the interaction

between a laminar boundary layer and the cavity, which

creates shear-layer oscillations. The aim is to understand

the three-dimensional flow morphology varying the

Reynolds number and the cavity shape. Flow visualiza-

tions are obtained in a plane situated inside the cavity in

order to get the dynamical structures. Dimensional anal-

ysis of the cavity flow teaches that three dimensionless

numbers are necessary for the flow reduction. This is

confirmed by experimental results pointing thresholds of

appearance of instabilities identified for some combina-

tions of Reynolds number and geometric parameters. The

key mechanisms for their existence are centrifugal effects

induced by a vortex of spanwise axis with sufficient

intensity, and viscous effects due to the wall confine-

ment of the cavity. Their destruction is linked to flow

transition to turbulence above a limiting convective

velocity generated by the vortex of spanwise axis. These

instabilities are generally present in a spanwise row of

counter-rotating pairs of vortices, but for some cases,

isolated pairs are also identified. Secondary modulations

of primary instabilities are also present for particular

parameters. Results permit to discriminate the relevant

scales associated with the shear layer and the inner cavity

flow.

List of symbols

A Plate length upstream of the cavity

B Plate length downstream of the cavity

D Wind tunnel height

F Span ratio

H Cavity height

H Helicity

L Cavity length

N Number of pairs of spanwise vortices

R Aspect ratio

Re Reynolds number

S Cavity span

t Time

Ue External velocity

Uc Maximum advection velocity inside the cavity

V~ Velocity vector

Ws Spanwise drift velocity

(x, y, z) Cartesian coordinates

d2 Momentum thickness of the upstream boundary

layer

k Spanwise wavelength of the instabilities

l Dynamics viscosity

m Kinematics viscosity

q Density

x
*

Vorticity
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Université Pierre et Marie Curie, Paris 6, 4 Place Jussieu,

75252 Paris Cedex 05, France

L. Pastur
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1 Introduction

The interaction between a boundary layer and a cavity

results in a complex coupling of shear layer and recircu-

lating flow (Pereira and Sousa 1995). That wall-bounded

three-dimensional flow is the place for the development of

primary instabilities whose dynamics is strongly led by the

vortical flow motion inside the cavity. Such instabilities are

found for different configurations.

The Görtler instability is a boundary layer instability

induced by concave curvature. When the boundary layer is

very small in comparison with the wall curvature radius,

the centrifugal effects can be neglected in the basic state,

which is considered as a quasi-parallel flow. However,

centrifugal effects actually act in destabilizing the basic

flow. The Görtler instability is the origin of transition to

turbulence in bounded shear flow within low disturbance

environment (Saric 1994). It is found from the range of low

velocities (Cui 2004), to hypersonic flows (Aymer de la

Chevalerie et al. 1997; Navarro-Martinez and Tutty 2005).

The Taylor-Couette instability is a centrifugal instability

in a viscous flow confined by two rotating cylinders of radii

R1 and R2. The basic state is the sum of a linear and a

hyperbolic function of the radius. This instability has been

widely studied for a narrow gap d = R2 - R1 with a sta-

bility transfer, above a critical threshold, between the basic

state and stationary toroidal vortices. Similarly, Dean

instability occurs for the same configuration with the

presence of an azimuthal pressure gradient. Instability

thresholds from the basic state to stationary vortex rings

have also been established. An alternative approach of the

shear-layer cavity flow has been conducted by its identifi-

cation with the Taylor-Couette problem: the solid-body

rotation of a central vortex is similar to the inner rotating

cylinder and the cavity walls are the outer fixed cylinder

(Brès and Colonius 2008). Then, it is possible to unify the

previous types of instabilities into a single type coupling

centrifugal effects and wall effects.

Flow dynamics studies have been achieved on lid-driven

cavities for the same Reynolds number range as the present

case: the difference is the absence of a developing unstable

shear layer. Ghia et al. (1982) used a multi-grid method to

simulate the flow inside a square lid-driven cavity, where a

main vortex is developing along the whole length. Visu-

alizations have been conducted by Koseff and Street

(1984a, b, c) with dye emission, with tiny particle seeding

by Migeon (2002) and Migeon et al. (2003) and compari-

sons with numerical simulations were carried out for the

same measurements (Guermond et al. 2002). In these

studies, a row of vortices was identified along the span.

This work considers centrifugal instabilities generated

by the combination of wall curvature and a recirculating

vortical flow inside a parallelepipedic cavity. A numerical

simulation of the three-dimensional development of the

cavity flow has been conducted for compressible flow

conditions (Brès and Colonius 2008). The nature of the

upstream boundary layer is important for the cavity flow

developments (Chatellier et al. 2004; Chang et al. 2006).

Visualizations in different planes have been reported pre-

viously (Faure et al. 2007) showing the main cavity flow

morphology, for Reynolds numbers built on the cavity

length, between 860 and 27,700. The driving mechanisms

of the flow are the shear layer that is developing above the

cavity, and at least one vortex of spanwise axis, developing

inside the cavity.

The present study focuses on flow visualizations in a

spanwise plane inside the cavity at very low Mach number,

varying the length and the height of the shear-layer-driven

cavity. The aim is to address the following issues:

• analyze whether the flow dynamics can be reduced to

dimensionless numbers,

• give the flow morphology with cavity geometry and

Reynolds number,

• track threshold parameters for which centrifugal vorti-

ces are present,

• provide features of centrifugal instability vortices.

2 Experimental setup and apparatus

The airflow is generated by a centrifugal fan placed

upstream of a settling chamber (Fig. 1a). The seeding

particle injection is achieved at the fan inlet. An axial duct

test section 

injection of tracers 

fan

settling chamber 

flow direction 

honeycomb 

contraction

plate leading edge 

(a)

S = 300 mm 

(b)

A = 300 mm L

x

y

z

B = 370 mm 

LDV measurement of Ue

D = 75 mm 

H

Fig. 1 Experimental setup: a wind tunnel, b test section dimensions

and coordinates system

396 Exp Fluids (2009) 47:395–410

123



terminated with honeycomb and a contraction drives the

flow toward the experimental facility, which consists of a

test section containing a flat plate beginning with an

elliptical leading edge, in order to fix the boundary layer

origin. The length of the plate is A = 300 mm providing

an established laminar boundary layer at the cavity

upstream edge. To reduce light wall reflections, the whole

test section is made of antireflection glass 2 mm in

thickness. The cavity height is varied between H = 25

and 150 mm. Its span S = 300 mm is constant because

the cavity ends in this direction are the wind tunnel

vertical walls (Fig. 1b). In addition to the Reynolds

number, two other dimensionless numbers are defined: the

span ratio, F = S/H (span over height) studied from 2 to

12, and the cavity aspect ratio, R = L/H (length over

height) from 0.25 to 2.5. This latter ratio can be changed

continuously by moving the glass pieces consisting in the

downstream wall of the cavity and the downstream plate,

which has a length B = 370 mm. The flow is incom-

pressible since the maximum Mach number is lower than

0.01. At the wind tunnel outlet, the flow is rejected inside

the experimental room.

The choice of a relevant length scale to build a Reynolds

number is of first importance. Many authors working with

compressible conditions (Forestier et al. 2003) chose a

Reynolds number built on the momentum thickness d2 of

the laminar boundary layer upstream of the cavity, which

is the length scale for the shear layer initial development,

and the upstream external velocity Ue. In the present work,

that Reynolds number Red,2 is between 71 and 180, cor-

responding to external velocities from 0.57 to 2.77 m s-1.

If we consider the development of the shear layer above the

cavity, the amplitude of its oscillations increases with

the distance from the upstream edge of the cavity. Then, the

cavity length L is pertinent for selection of linearly unstable

modes in the shear layer. As a consequence, the relevant

Reynolds number is ReL. In the present study, it varies from

860 to 36,900. If we focus on the flow development inside

the cavity, the confinement between the upstream and

downstream walls, distant of L, and the confinement

between the bottom of the cavity and the shear layer, dis-

tant of H, lead to define an additional Reynolds number

ReH, here from 1,150 to 36,800. As it has been shown (Brès

and Colonius 2008), the development of an unstable three-

dimensional unsteady mode inside the cavity with an

oscillation frequency based on the cavity height H is

comparable in all configurations, suggesting that H is the

most appropriate scale to characterize the three-dimen-

sional flow development. Then, that latter Reynolds num-

ber will be chosen and its relevance for the development of

instabilities will be confirmed hereafter. Three independent

dimensionless numbers are thereafter necessary for the

cavity flow description, respectively, the Reynolds number

based on cavity height ReH = qUeH/l, the aspect ratio

R = L/H, and the span ratio F = S/H.

The external velocity is measured with laser Doppler

velocimetry 102 mm upstream of the cavity and 25.5 mm

above the flat plate. This point of measurement is in the

external flow sufficiently upstream of the cavity to avoid

any perturbation from the instability developing above

the cavity. The origin of the coordinate system is set at the

upstream edge of the cavity at mid-span, the x-axis is the

flow direction, the y-axis is normal to the upstream wall

where the boundary layer develops, and the z-axis is along

the cavity span. It has been checked that the test section

upper wall, located at D = 75 mm above the cavity, has no

influence on the shear layer developing on the cavity and,

as a consequence, no influence on the flow. The thickness

of the boundary layer developing on this wall has no

influence on the external flow along the longitudinal and

spanwise directions. It has been shown for backward facing

step flows that the influence of the upper wall affects the

flow from 10 cavity heights downstream of the beginning

of the step. The cavity under investigation is not a shallow

cavity (for L/H [ 5), where the shear layer tends to attach

the cavity floor. However, in that configuration, the

development and propagation of large-scale vortices

appear to be relatively unaffected by confinement effects.

In the present study, it will be even more so given the

maximum aspect ratio of 2.5.

Hereafter, the expressions ‘‘upstream’’ and ‘‘down-

stream’’ will refer to the external velocity direction. Flow

visualizations by tracer injection are carried out with fog

obtained with a low density smoke generator. As a result,

the observed structures are streaklines of fluid injection

inside the cavity and not the streamlines themselves. The

identity between streaklines and streamlines is valid only

for stationary flows, which is not strictly the case for

present measurements. However, the Reynolds number is

sufficiently low and the velocity inside the cavity is small

enough to ascertain that visualizations show flow structures

in well-seeded regions. This has been confirmed by com-

parisons with PIV measurements (Faure et al. 2008).

Finally, the flow injection inside the cavity gives infor-

mation on the flow dynamics and the developing structures.

The light source is a 5 W argon-ion laser tuned to the

blue wavelength (488 nm). The laser beam provides, by

passing through a cylindrical lens, a sheet whose thickness

is 0.25 mm. The image recording system consists of a 10-

bit camera with 1,032 9 778 pixels and a frequency of

20 Hz. The camera has a complete view of the cavity span.

For each cavity geometry, the position of the (x, z) visu-

alization plane is set to a relative vertical position y* =

y/H = -0.3 (Fig. 2). An exploration of the cavity along

the y-axis points out the overall annular flow pattern. That

particular value of y* is retained, for comparison of
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different cases, because a vortex of spanwise axis is always

present in the upper part of the cavity. The recording time

is 25 s, which is sufficient to capture the flow dynamics

unsteadiness. The repeatability of flow visualizations has

been checked by recording different image series with

different wind tunnel runs, and by testing different smoke

injections. The external flow is established and uniformly

seeded with smoke when the images are recorded. Note

that if the observation time is too long, there is a saturation

of the cavity with smoke and no dynamical flow pattern can

be identified anymore.

3 Flow morphology

The three-dimensional character of the cavity flow has

been recognized in previous studies (Faure et al. 2007; Brès

and Colonius 2008). The shear-layer oscillations present

amplification along the cavity length and interact with the

downstream edge of the cavity (Fig. 3b). It results in a

periodic injection of the external flow inside the cavity,

carried along a primary vortex of spanwise axis. A sec-

ondary counter-rotating vortex of spanwise axis is also

identified for long (R [ 1.25 Fig. 3a) or short (R \ 0.75

Fig. 3c) cavities. In that latter case, the vortex is placed in

the lower half of the cavity while in the former case it

forms in the upstream half of the cavity. These primary and

secondary vortices are unsteady for most configurations. In

the following part, the existence and properties of addi-

tional spanwise instabilities are discussed in relation with

the Reynolds number, aspect ratio and span ratio. Three

behaviors are identified: the absence of any spanwise row

of vortices (Fig. 3d), spanwise instability vortices aligned

in rows in the upper and lower cavity edges (Fig. 3e) or the

presence of an isolated pair of vortices near the upstream

edge (Fig. 3f). These instability vortices are carried off

toward the lateral sides of the cavity by a spanwise flow,

coming from the cavity sides toward the centerline and

forming four recirculation cells (Fig. 3d–f). The develop-

ment of these three-dimensional instabilities is caused by

perturbations on the basic flow. It has been shown that

these instabilities are essentially independent of the Mach

number (Brès and Colonius 2008).

3.1 Absence of spanwise row of vortices

Let us consider first cases where no spanwise row of vor-

tices is present, that is the case when the advection flow

velocity inside the cavity is not strong enough to destabi-

lize the wall boundary layers. That advection velocity

comes from the primary vortex, developing along the

cavity span, which places in the downstream part of the

cavity. Figure 4 shows the dynamical structures for

ReH = 2,967 and R = 1 in the visualization plane; the

external flow, passing above the cavity, is from the bottom

to the top of the figure. We note the downstream cavity

shear-layer interaction with the cavity, producing seeding

injection. The tracer is advected inside a main vortex,

developing in the (x, y) plane, that is identified as the

upstream cavity wall white line. The inner part of the

cavity points out a flow coming from the sides to the

centerline. Thus, there is a coupling between the left and

right sides and the central part of the flow, leading to four

low velocity recirculation cells inside the cavity (Faure

et al. 2007).

Another type of flow without row of vortices shows two

corner spiral vortices near the cavity spanwise sides, the

left one being in a shadow zone (Figs. 5, 6). This type of

flow has been reported and studied extensively in lid-dri-

ven cavities (Chiang et al. 1997; Migeon et al. 2003), for a

Reynolds number of 1,000. The corner vortices are the

consequence of a fluid transport from the sides into the

primary vortex core, due to an Ekman layer. Note that in

the present investigation, they have been identified only for

the span ratio F = 3 and small aspect ratios R \ 1. They

may be present for other cases, but the laser plane, located

at y* = -0.3, is not necessarily perpendicular to the spiral

vortex axis, preventing their visualization. In some cases,

the effect of a limited flow seeding near the cavity span

sides can also affect their observation.

3.2 Presence of spanwise instabilities

Figure 7 shows the cavity flow for a configuration with a

row of mushroom-like patterns near the upstream cavity

edge. Note that views in three different planes are not taken

at the same time. The mushroom-like seeded patterns are

visualizations of pairs of counter-rotating vortices whose

axes are orthogonal to the observation plane (Fig. 7a, b).

These vortices are also observed near the downstream

cavity edge, and, for that case with a single vortex of

spanwise axis spreading over the cavity section, this pattern

is found for different relative position y* inside the cavity,

flow

laser

camera 

y

Fig. 2 Visualization in a (x, z) plane inside the cavity
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Fig. 3 Sketch of the cavity flow

dynamics in a (x, y) plane for:

a R [ 1.25, b 1.25 C R C 0.75,

c R \ 0.75 and in a (x, z) plane

with: d the absence of any

spanwise row of vortices,

e spanwise instability vortices

aligned in rows and f the

presence of an isolated pair of

vortices

z

x

downstream seeding injection line inside the cavity Fig. 4 Visualization for F = 6,

R = 1 and ReH = 2,967
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evidence that they are forming a loop inside the cavity.

Particularly for y* = -0.9, near the cavity bottom, the row

of vertical oval patterns is the intersection of tire-like

instabilities with the laser plane (Fig. 7c). For that Rey-

nolds number, between 9 and 11 pairs of vortices are

observed. Note that the spacing between pairs is not con-

stant, as mentioned by Finnis and Brown (1997). The

vortices are smaller near the cavity sides (left and right part

in Fig. 7a), where the spanwise flow is dominant, which

evidences that the spanwise flow tends to stabilize the

cavity boundary layer, preventing the development of

instabilities.

For a larger Reynolds number (Fig. 8), the upstream row

is still present, but is a little more deformed, while the

downstream row tends to flatten on the wall. For that

configuration, between seven and nine pairs of vortices are

observed near the upstream edge. They are also identified

near the downstream cavity edge, evidence of their annular

shape (Fig. 8).

The issue of the flow properties description previously

addressed with a dimensional analysis can be raised if one

observes the cavity flow for the same aspect ratio and the

same Reynolds number, but for two different span ratios

(Figs. 9, 10). For F = 6, there is a well organized row of

mushroom-like patterns around the center span of the

cavity (Fig. 9) while there is no more row of instabilities

for F = 2 (Fig. 10).

An incompressible, isothermal, unsteady three-dimen-

sional direct numerical simulation (DNS) has been realized

for the particular case F = 6, R = 1 and ReH = 4,230 with

z

x

corner spiral vortex corner spiral vortex Fig. 5 Visualization for F = 3,

R = 0.25 and ReH = 10,632

z

x

corner spiral vortex corner spiral vortex Fig. 6 Visualization for F = 3,

R = 0.5 and ReH = 4,120

z

x

(a)

(b)

(c)

a) y* = – 0.3 
b) y* = – 0.5 
c) y* = – 0.9 

Fig. 7 Visualization for F = 6,

R = 1 and ReH = 4,230 for a
y* = -0.3, b y* = -0.5 and

c y* = -0.9
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the Olorin code developed in LIMSI. Navier-Stokes

equations are discretized following a finite volume

approach on a staggered structured grid with a second order

approximation in time and space. Advection fluxes are

calculated with a quadratic upstream interpolation for

convective kinematics scheme (Leonard 1979). The dis-

cretized Navier-Stokes equations are implicited on viscous

terms leading to the set of Helmholtz equations resolved by

an incremental alternating direction implicit method

(Hirsch 1987). The incompressibility is realized with a

usual prediction/projection method. The projection step

leads to resolve a Poisson equation for the pressure with a

relaxed Gauss-Seidel method, coupled with a multigrid

method to accelerate the time convergence of calculation

(Gadoin et al. 2001). The grid is 256 9 128 9 128 nodes

with clustering of points spacing near the walls in the

cavity and shear layer. The computational domain extends

several cavity heights upstream and downstream. Top,

bottom and lateral boundaries of the domain are rigid and a

laminar boundary layer develops upstream of the cavity.

The simulated velocity field is carried out over 40 s after

the flow is converged in a statistical sense. The recording

frequency is 30 Hz. It is representative of the dynamical

scales inside the cavity. Figure 11 shows the three-

dimensional view of the cavity with the helicity of the

velocity field defined as:

H ¼ V~ � x~

with V~ the velocity vector, x~ ¼ curl
��!

V~ the vorticity vector.

If one compares this result (Fig. 11) with the flow

visualization (Fig. 7a), a very good agreement is found,

which confirms the accuracy of the visualizations. The pair

of positive and negative helicity contours corresponds to

pairs of centrifugal instability vortices. A comparison in the

(x, z) plane located at y* = -0.3 is provided in Fig. 12.

Note that the number of centrifugal instability vortices is a

little more important in the simulation (between 12 and 14)

than in the experiment (between 9 and 11), but their sizes

are comparable. This difference is probably due to the

comparison of two instantaneous fields at a different time.

In addition, the lateral parts of the cavity along the span

might be not correctly seeded in the visualization and we

could miss some pair of instabilities. This simulation is

also in good agreement with the calculation of Brès and

Colonius (2008) obtained for a similar configuration with a

compressible code with a linear stability analysis to search

z

x

Fig. 8 Visualization for F = 6,

R = 1.5 and ReH = 4,230

z

x

Fig. 9 Visualization for F = 6,

R = 0.75 and ReH = 9,070

z

x

Fig. 10 Visualization for

F = 2, R = 0.75 and

ReH = 9,070
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for three-dimensional global instabilities of the two-

dimensional mean flow, with lateral periodic boundary

conditions. For that latter computation, the comparison

with the visualization is realized in the central part of the

cavity and does not take into account the effects of the

lateral sides.

3.3 Secondary spanwise instabilities modulation

The row of instabilities is also subject, for some parame-

ters, to present a second order time-dependent modulation

of its amplitude (Fig. 13). The mechanism involves two

adjacent pairs of mushroom-like structures. When one of

these pairs is well developed in the z extension, its

neighbor shows a narrow and elongated shape along the x-

axis. Then the first one is crushed and ejected in the central

part of the cavity, while the latter is increasing in z and

decreasing in x extension, down to the upstream edge of the

cavity. The mechanism of stability exchange is then repe-

ated periodically in time with a given period of around 1 s.

This time-dependent secondary instability is observed only

for F = 12, for any aspect ratio where a row of instability

is present and R [ 1. To the authors’ knowledge, this result

has never been mentioned in previous studies on open

cavity flows or lid-driven cavity flows.

3.4 Isolated unsteady instabilities

Figure 14 points out a case where the pairs of vortices are

not organized into a row, but rather form unsteady iso-

lated pairs. In this figure, only one pair of vortices is

present on the left side of the image near the upstream

wall with no counterpart close to the downstream wall.

This suggests that the annular shape of the centrifugal

instability is lost.

3.5 Transitional flow

For high Reynolds numbers, no row of identified flow

patterns is observable because the flow is transitioning

toward turbulence (Fig. 15). Centrifugal instability vortices

are, however, still present but their patterns are no more

stable structures. They evolve in coherent large-scale

structures, which cannot be identified with flow visualiza-

tion because of tracer diffusion. As it can be thought, the

Reynolds number is not the only parameter to define the

x

z

y

Fig. 11 Helicity obtained by

DNS for F = 6, R = 1 and

ReH = 4,230

(b) z

x

(a)

H

z

x

– 1.0 – 0.5 0.0 0.5 1.0 
Fig. 12 Spanwise instabilities

development for F = 6, R = 1

and ReH = 4,230; a helicity of

the numerical simulation and b
flow visualization
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presence or absence of these vortices, since the cavity

geometry plays an important role.

The existence domain of structured spanwise vortices is

thus limited by a domain with no spanwise row of vortices,

for lower Reynolds numbers, and a domain of transition of

these vortices toward a turbulent flow, for much higher

Reynolds numbers. The limiting thresholds are established

and discussed in the following section.

t0

t0 +  t

t0 + 2  t

t0 + 3  t

t0 + 4  t

t0 + 5  t

z

x

Fig. 13 Visualization for

F = 12, R = 1.75 and

ReH = 2 660, with time interval

dt = 0.2 s (the arrows note two

neighboring pairs of vortices to

point out their amplitude

modulation with time)

z

x

Fig. 14 Visualization for

F = 3, R = 0.5 and

ReH = 15,000

z

x

Fig. 15 Visualization for

F = 6, R = 1.5 and

ReH = 7,500
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4 Properties and data reduction

4.1 Influence of the span ratio

Figure 16 ascertains the domain of existence of centrifugal

instability vortices, as functions of Reynolds number ReH

and aspect ratio R, for different span ratios F. For F = 12–

3 (Fig. 16a–c), the region where instabilities are present in

the plane (R, ReH) is forming a compact domain, which is

not the case for F = 2 (Fig. 16d), where there are two

distinct regions with the presence of spanwise instabilities

linked by a zone with isolated pairs instead of rows of

instabilities. For this case, this particular behavior may be

caused by the influence of lateral confinement on the

generation mechanism of the centrifugal instability vorti-

ces. The centrifugal instability vortices development can be

understood as a three-dimensional perturbation of a two-

dimensional mean flow. The secondary spanwise instability

is only present for F = 12 and for every aspect ratio R [ 1

(Fig. 16a). It might be thought that the time-dependent

secondary instability of the row is due to a balance between

the spanwise recirculation and the primary cavity vortex

expansion, since a secondary vortex exists for R [ 1.

Another interesting result, under the limitation of the

investigation domain, is that the lower threshold of exis-

tence of instabilities is independent of ReH for R C 1.5

(Fig. 16a–c). This suggests that the number of vortices of

spanwise axis inside the cavity strongly modifies the

instability process. Previous studies of lid-driven cavities,

available for F = 3 and R = 1, show the development of

centrifugal instability vortices for ReH [ 1,300 (Chiang

et al. 1997, 1998) or ReH [ 1,000 (Koseff and Street

1984a, b, c), which is consistent with the present study

since the centrifugal instability vortices are identified for

the first Reynolds number measured, which is 4,120

(Fig. 16c). Studies for F = 2, R = 1 and ReH = 1,000 and

F = 4, R = 2 and ReH = 500 (Migeon et al. 2003) do not

show any development of centrifugal instability vortices,

which is also consistent with the present measurements.

We can say that the confinement effects, resulting in a

division of the existence domain of instabilities, are limited

to span ratios F \ 2. If we get rid of the span ratio F = 2, a

unique domain of existence of centrifugal instability vor-

tices is found, also considering isolated vortices, with the

same thresholds for any span ratio (Fig. 17). Thus, the

analysis of the flow dynamical properties inside the cavity
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can be reduced to two dimensionless numbers, say ReH and

R, for large span ratio cavities (F C 3), not considering the

secondary instability. In some regions of the stability dia-

gram (Fig. 17), near the upper limit of stability, there is a

superposition of hollow and full symbols, for instance, for

R = 2 and ReH = 3,790, where hollow circles are mixed

with full squares. It must be due to the uncertainty in the

parameters setting. Notice that the cavity height H is the

appropriate scale to describe the cavity flow instability

development, while the cavity length L is the appropriate

scale for the shear-layer development.

4.2 Number of centrifugal instability vortices

Figure 18 shows the number of pairs of centrifugal insta-

bility vortices present simultaneously inside the visualiza-

tion plane versus ReH. Cases with vortices rows as well as

cases with isolated pairs of vortices are considered (then,

N = 1). Limiting cases where vortices are not present are

also marked (then, N = 0). As the vortices are evolving

with time, the uncertainty on their number is estimated to

±1 and the figures plotted are averaged values on the

recorded sequences. For each span ratio where a complete

cycle of appearance, presence and vanish of instabilities is

investigated experimentally, we note an increase followed

by a decrease of the number of pairs of vortices. This is the

proof that the appearance-vanish cycle is a continuous

phenomenon driven by the external velocity Ue. The

geometry is also important since there is an aspect ratio for

which the vortices number reaches a maximum. We can

notice in Fig. 18a and b that this maximum number of

spanwise pairs of vortices is found for R = 1. This must be

connected to the presence of a main round vortex of

spanwise axis inside the cavity, which provides a best

radius of curvature with respect to wall confinement. There

is a drop of the number of vortices for F = 3 (Fig. 18c),

the maximum being get for R = 1.25. The same comment

is done for F = 2 with a lower number of vortices

(Fig. 18d). That decrease of the number of vortices inside

the cavity with span ratio increase points that the three-

dimensional flow is a phenomenon preventing the forma-

tion of centrifugal instability vortices.

As very few data concerning the number of centrifugal

instabilities are available, these measurements deserve

comparison with the results of Koseff and Street (1984a)

for a lid-driven cavity. They found 8 pairs of centrifugal

instability vortices for F B 3, R = 1, ReH = 3,000 and 11

pairs for ReH = 6,000. The present measurements give

four pairs of instability vortices, respectively, for F = 3,

R = 1, ReH = 4,120 and 5,930. If we can draw a conclu-

sion from the comparison between these two Reynolds

numbers, it can be said that oscillations of the shear layer

affect the flow organization inside the open cavity, which is

different from a lid-driven cavity. However, we note here 8

pairs for F = 6, R = 1 and ReH = 4,230 and 10 pairs for

F = 6, R = 1 and ReH = 5,830, results close to Koseff and

Street’s observation. The comparison of our measurements

with the development of a shear-layer-driven cavity flow,

for R = 1 and ReH = 6,970, presents a good agreement

(Brès and Colonius 2008). As there is a span periodicity in

their simulation, these authors found five pairs of centrif-

ugal instability vortices, to compare with the five pairs

obtained in the central third of the span in present mea-

surements (Fig. 12). The difference in the number of vor-

tices between lid-driven and shear-layer cavity flow could

suggest that the latter, with the development of a shear

layer, is more affected by the span ratio than the lid-driven

cavity.

The viscous effects on the stability development inside

the cavity are stronger for small aspect ratios R and small

span ratios F. This could explain the peculiar existence

diagram for F = 2 (Fig. 16d) with two distinct regions and

cases where isolated vortices are present. Similarly, vis-

cous effects get stronger for small aspect ratios R, which

could explain the absence of secondary instability for

F = 12 and R = 1 (Fig. 16a). An attempt of description of

the instability generation process could be observed as

follow, increasing the cavity dimensions (span ratio F).

The viscous effects tends to limit the development and

number of spanwise instabilities for F = 2 (Fig. 18d),

there is a development of spanwise instabilities as a row of

pairs of vortices for 3 B F B 6 and for F = 12 the sec-

ondary spanwise instability modulation appears.

4.3 Wavelength

As the centrifugal instability vortices are developing along

the cavity span, their number is strongly tied to their
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wavelength. However, the pairs of vortices are not always

adjoined, so the measurement of an averaged wavelength

from flow visualizations seems relevant. Its uncertainty is

±2 mm. Figure 19 presents the development of the span-

wise wavelength k, corresponding to the distance between

two pairs of vortices, versus the Reynolds number ReH.

Note that the wavelength is plotted only when a row of

instabilities is present, thus cases with isolated unsteady

instabilities are not considered. As we noted previously, the

spacing between vortices is not always constant, and the

estimated wavelengths must be understood as maximum

averaged values. The wavelengths have been measured on

the images recorded for each geometrical and wind tunnel

parameter. An automatic research of the wavelength can be

achieved, for example, with a Fourier transform of the

image of flow visualization to get the more significant

wave number. However, this is difficult to realize because

small scale structures appear as the most powerful com-

ponents in a rather broadband spectrum, and finally the

search is conducted by visual analysis. The general trend

observed in Fig. 19 is an increase of the wavelength with

the aspect ratio R except for F = 2 where three-dimen-

sional effects on the mean flow are very strong. It means

that larger instabilities, along the z-axis, are present for

long cavities. The instability generation is driven by a

three-dimensional coupling between the axial and span

directions. Note that for large span ratios (F = 12, 6) the

wavelength can be greater than the cavity height. The

wavelength tends also to increase slowly with the Reynolds

number ReH, for most of the cases, confirming an influence

of the external flow on the instabilities generation.

An estimate of the wavelength measured by Koseff and

Street (1984a) gives k/H = 0.38 for F B 3, R = 1 and

ReH = 3,000 and k/H = 0.27 for ReH = 6,000. Similarly,

Freitas and Street (1988) provide k/H = 0.2 - 0.3 for

F = 3, R = 1 and ReH = 3,200. In the present study,

k/H = 0.78 for F = 3, R = 1 and ReH = 4,120 and

k/H = 0.68 for F = 3, R = 1 and ReH = 5,930. As men-

tioned in the discussion on the number of instabilities

vortices, the oscillations of the shear layer above an open

cavity may affect the flow organization inside the cavity in

a different way from a lid-driven cavity.

4.4 Spanwise drift velocity

It has been shown by Faure et al. (2007) that the spanwise

instabilities are migrating from the cavity centerline out-

ward the cavity sides. This drift motion is due to the
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spanwise flow in the inner part of the cavity from the sides

toward the centerline. The spanwise drift velocity Ws is

measured from space-time diagrams. They are built

stacking, over each other, a horizontal line of the visuali-

zation chosen in a region where spanwise instabilities are

present, at different successive times (dashed white line in

Fig. 20a). On such diagrams, vertical lines are associated to

stationary events, while oblique lines are associated to

traveling patterns (Fig. 20b). If oblique lines are, more-

over, straight lines, it means that the pattern is traveling at a

constant velocity. As these lines have a slope between zero

and a maximum value, we choose to characterize each

configuration with a maximum spanwise drifting velocity

Ws. That velocity can also be measured from a Fourier

transform of the space-time diagram (Fig. 20c), where the

spanwise drift velocities consist in a set of maxima around

zero, limited by a maximum value (dashed white line,

Fig. 20c). The measurement of Ws brings to 7.3 mm s-1

with both of these methods.

Another reason to choose the maximum spanwise drift

velocity to characterize the span flow motion is that the

drift motion is not symmetrical for all configurations. There

is a shift of the symmetry axis from the centerline of the

cavity. This shift is not an experimental artifact since it can

be found for different successive wind tunnel runs and is

reproduced in the numerical simulations. Note that the

spanwise drift velocity Ws is very low in comparison with

the external velocity, reaching a maximum value of 2% of

Ue. This velocity Ws is also lower than the maximum

advection velocity inside the cavity Uc which is generally

5% of Ue (Fig. 21):

Uc

Ue

� 0:05
Ws

Ue

� 0:02

Let us now consider the variation of that drift velocity

with ReH, R and F. The general behavior is a global

decrease of Ws/Ue with R, showing that short cavities help

the drift flow. For F = 12 (Fig. 22a), the drift velocity

tends to decrease when the Reynolds number increases

except for R C 2. The drift velocity is generally greater for

the lower Reynolds number ReH where spanwise instabil-

ities are present than for higher Reynolds numbers. For

F = 6 (Fig. 22b), the drift velocity is almost constant

versus Reynolds number. For F = 3 (Fig. 22c), the drift

velocity decreases as Reynolds number increases. There is

no spanwise drift velocity for F = 2 because of the very

low number of spanwise instabilities. Notice that in

numerical simulations with periodic boundary conditions,

there is no more drift of the pairs of vortices. This would
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confirm that the mechanism of the drift originates in the

lateral sides of the cavity, where an Ekman layer is present.

5 Conclusion

The flow inside a parallelepipedic cavity shows the

development of different morphologies discussed in terms

of the presence or the absence of centrifugal instability

vortices. These flow instabilities are induced by the

advection velocity and the flow curvature radius induced

by a main vortex whose axis is the cavity span, and they are

known as independent of the Mach number. For a squared

section cavity and ReH = 4,230, features of these insta-

bilities present a good agreement with results obtained by a

DNS of the flow. The pairs of vortices are not always

present and the thresholds for their appearance and disap-

pearance are identified. For low Reynolds numbers, they

are not observed. This can be caused by an advection

velocity that is not strong enough to destabilize the

Fig. 20 a Visualization for

F = 6, R = 1.25 and

ReH = 5,320, b corresponding

space-time diagram and c
Fourier transform of the space-

time diagram
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boundary layer on the cavity walls. The spanwise flow

coming from the cavity sides toward the centerline may

also act as a stabilizing process preventing the formation of

instabilities. For much higher Reynolds numbers, the flow

is transitioning to a fully developed turbulent flow, and

there are no more patterns resulting in spanwise instabili-

ties. The geometry is also an important parameter in terms

of existence of these instabilities. It has been pointed out

that three dimensionless numbers are necessary to describe

the flow, the Reynolds number and two geometrical ratios

in order to take into account the three-dimensional flow

features. However, the flow description can be reduced to

two dimensionless numbers for F C 3.

The centrifugal instability vortices are generally devel-

oping in a spanwise row, but for some configurations,

isolated pairs of vortices are observed particularly for low

span ratios (R = 2, 3). The properties of the instabilities

are also discussed in terms of drifting velocity toward the

sides, wavelength and number. The spanwise drifting

velocity is decreasing with aspect ratio. The wavelength of

the row of instabilities mainly increases with aspect ratio.

For cases with an established row (F = 12, 6), a maximum

number is reached when R = 1. For lower span ratios, the

number of pairs decreases rapidly since there is no more

stable row but isolated pairs of vortices. It seems that the

spanwise flow may prevent the centrifugal instability vor-

tices generation.

The existence diagrams of instabilities point, for span

ratios larger than 2, that the investigated zone where

centrifugal instability vortices are present is forming a
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Fig. 21 Velocity scales a in a (x, y) plane and b in a (x, z) plane
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compact domain. This is not true for F = 2, where the

existence domain is divided between two regions separated

by a line where isolated pairs are observed. A similar

division into two existence domains may also be relevant

for higher span ratios, but for aspect ratios larger than 2.5,

which have not been investigated. The lower threshold of

existence of instabilities is independent of ReH for R C 1.5,

which suggests that the number of vortices of spanwise

axis inside the cavity strongly conditions the instability

process. The similarity behavior of the existence region of

instabilities for different values of F C 3 is obtained with

the Reynolds number built on cavity height. It seems that

this dimension is the driving parameter for the cavity flow

dynamics.
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Görtler-like vortices inside a square-section lid-driven cavity for

1,000 B Re B 3,200. Exp Fluids 33:594–602

Migeon C, Pineau G, Texier A (2003) Three-dimensionality devel-

opment inside standard parallelepipedic lid-driven cavities at

Re = 1000. J Fluids Struct 17:717–738

Navarro-Martinez S, Tutty OR (2005) Numerical simulation of
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