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Abstract 
Cavity flows are a class of flows bounded by material structures, where a recirculation region is 
present, and they are found in many practical applications. In the present study, the interaction 
between a boundary layer and an open parallelepipedic cavity develops a Kelvin-Helmholtz-like 
instability coupled with the cavity recirculation. PIV measurements of the flow are carried out in 
two orthogonal planes inside the cavity, for different aspect ratios, incompressible flow 
conditions and Reynolds numbers in the range 1900 to 12000. Mean velocity and second-order 
moments of velocity fluctuations reveal the flow morphology. For particular conditions, 
centrifugal instabilities appear that are induced by flow curvature due to wall confinement. The 
use of an identification criterion indicates the presence of pairs of counter-rotating vortices 
winded around the recirculation. A parametric analysis is conducted and the inviscid Rayleigh 
discriminant provides the potentially unstable flow regions inside the cavity. Finally, a stability 
parameter considering the ratio between centrifugal destabilizing effects and stabilizing viscous 
effects is carried out, and gives thresholds for the emergence of the centrifugal instability. The 
study draws to an end with a comparison with a well-documented lid-driven cavity flow. 

1 Introduction 
Cavity flows are a wide class of wall-bounded flows dominated by recirculation vortices which 
have received significant attention in the past years. They are found, with medium-range 
Reynolds numbers, in various applications: 

– wind transport pollutant in streets surrounded with buildings (Chabni, 1997); 
– cooling systems over integrated circuits made of parallelepipedic electronics components; 
– door gaps on motor vehicles (Reulet et al., 2002); 
– insects wings with small cavities or riblets on a wing, increasing lift without drag penalty 

(Buckholz, 1986); 
– hydrodynamic bearings and lubricating systems (Braun et al., 1993); 
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– artificial aortic devices or blood aneurysms (Liou & Liao, 1997). 
A completed synthesis on cavity flows and noise generation is given in Gloerfelt (2009). It is 
possible to distinguish between lid-driven cavity flows (Migeon, 2000, Guermond et al., 2002, 
Migeon, 2002, Migeon et al., 2003, Siegmann-Hegerfeld et al. 2013), and shear-layer cavity 
flows (Fang et al., 1999, Lin & Rockwell, 2001, Forestier et al. 2003, Larchevêque et al., 2004, 
Kegerise et al., 2004, Savelsberg & Castro, 2008, Haigermoser et al., 2009). Among these latter, 
it is possible to divide them, after Charwat et al. (1961), between open cavities, where the shear-
layer interacts with the downstream edge of the cavity, and closed cavities, with flow 
reattachment on the cavity bottom. The boundary between these two classes is found for a cavity 
length-to-depth ratio varying from 8 (Sarohia, 1977) to 11 (Charwat et al., 1961). The open cavity 
issue develops a Kelvin-Helmholtz-like instability above a cavity flow featuring a primary 
spanwise recirculation vortex. The internal cavity flow itself is subject to develop a centrifugal 
instability and vortical features. We can build three Reynolds numbers with the external upstream 
flow velocity Ue and the fluid viscosity ν depending on the phenomenon considered. Reδ,2 built 
on the boundary layer momentum thickness δ2 at the leading edge of the cavity is relevant to 
describe the instability threshold of shear-layer oscillations (Rowley et al., 2002). ReL is built on 
the cavity length and is used to predict the shear-layer excited frequencies, since this distance is 
used in the Rossiter’s model (Rossiter, 1964). The third Reynolds number ReD is built on the 
cavity depth and used for the centrifugal instability description (Brès & Colonius, 2008). 
Flow instabilities can affect and lead to the destruction of a vortex. For example, wing tip vortices 
can develop Crow instabilities (Crow, 1970, Faure, 2008). The emergence of flow instabilities is 
also the origin of transition toward turbulence, like the hairpin vortical structures that develop on 
a wall boundary layer (Schlichting, 1960). In the present case of cavity flows, the centrifugal 
effects are the main cause of instability development. These centrifugal instabilities are of three 
types. Rotating flows between two cylinders develop Taylor-Couette instabilities: the streamlines 
are loops and this case corresponds to a closed system. Curvature effects imposed by wall lead to 
the development of Görtler instabilities, in that case, the streamlines are not closed and the 
system is said open. In the case of curvature effects with an external pressure gradient, a Dean 
instability can be found, which is also an open system (Mutabazi et al., 1990). Cavity flows 
induced by the development of a shear-layer are both closed and open systems because the 
streamlines are quasi-circular but they originate from the oscillations of the shear-layer. The 
cavity flow is governed by the linearized Navier-Stokes equations and can be investigated with a 
global stability analysis. A base flow is said to be asymptotically stable if the modulus of any 
initial perturbation tends to zero for large times otherwise it is asymptotically unstable (Schmid, 
2007). The stability of a base flow is reduced to an eigenvalues problem. The associated 
eigenvectors are the physical global modes. If at least one of the eigenvalues has a positive real 
part, the base flow is asymptotically unstable and the instability is called a modal instability. If all 
of the eigenvalues have negative real parts, the global modes will eventually decay at large times, 
and the base-flow is asymptotically stable (Sipp et al., 2010). That global stability approach has 
been used for the study of open cavity flows (Brès & Colonius, 2008, Barbagallo et al., 2009, 
Sipp et al., 2010, Meseguer-Garrido et al., 2011, de Vincente et al., 2014, Gomez et al., 2014, 
Yamouni et al., 2013, Meseguer-Garrido et al., 2014) and lid-driven cavity flows (Chicheportiche 
et al., 2008, Merle et al., 2010). That approach has demonstrated that both two-dimensional and 
three-dimensional cavity modes can coexist and are dependent on the cavity geometry and 
Reynolds number. It is particularly useful in order to elaborate flow control strategies (Sipp, 
2012, Luchini & Bottaro, 2014). Most of the configurations studied corresponds to a cavity 
aspect ratio equals to one, except Meseguer-Garrido et al. (2014) who varied L/D between 1.2 
and 3. 
The objective of the study is to conduct PIV measurements in a cavity of modular dimensions. 
Velocity fields provide information on flow vortical features. Parametric analysis is conducted 
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and compared with theoretical behavior of Taylor-Couette and Görtler flows, and experimental 
data for a lid-driven cavity flow. 

2 Experimental set-up and apparatus 
The experimental facility is a low-speed open-circuit wind tunnel (Faure et al. 2007, Faure et al. 
2009, Basley et al. 2011, Douay et al. 2013). The cavity dimensions (length L, depth D and span 
S) can vary and different aspect ratios L/D between 0.5 and 2 are investigated. The cavity span is 
fixed and corresponds to the test section dimension and the origin of the coordinate system is 
placed at the cavity leading edge at mid-span. The maximum turbulence intensity in the external 
flow is less 1%. The Reynolds number ReD is built on the cavity depth D. It has been shown that 
this Reynolds number is relevant for the internal cavity flow description (Brès & Colonius, 2008, 
Faure et al. 2009). PIV measurements are conducted with a pulsed YAG laser emitting a 0.25 mm 
thick light sheet at 532 nm with energy of 250 mJ per pulse. The frame series are recorded with a 
10-bit camera at a frequency of 20 Hz with a resolution of 1032×778 pixels. Velocity fields are 
obtained with an optical flow algorithm using orthogonal dynamic programming (Quénot, 1992). 
This image processing method provides highly resolved fields (1 vector per pixel) and is 
particularly efficient for high velocity gradient regions, such as shear-layers or recirculations. The 
velocity resolution is 1 / 32nd pixel or a relative velocity accuracy of 0.15% (Faure et al. 2006). 
The velocity field is not time-resolved in the external flow and shear-layer, where oscillations are 
of the order of 20 Hz, but is time-resolved inside the cavity where lower velocities are found. 
Hereafter, results for two observation planes are presented: a (x,y) plane located at mid-span 
(z = 0), to get the main flow morphology of the recirculation (Figure 1-a) and a (x,z) plane, to 
describe the development of centrifugal instabilities superimposed upon this flow (Figure 1-b). 
For each of these configurations, the camera gets a sight of the whole cavity along its length or its 
span with a magnification of 2×10−4 m/pixel. In the first configuration, the (x,y) plane is located 
at the cavity mid-span. In the second configuration, the (x,z) plane is placed at a relative vertical 
position y / D = −0.3. For the first measurement configuration, the time interval between to laser 
flashes is calculated in order to get a maximum displacement of images of particles equals to 10 
pixels inside the cavity. This setting gives larger displacements in the external flow but thanks to 
the optical flow algorithm, resolves both the cavity flow and the external flow. For the second 
measurement configuration, the time interval is the same as the camera and we get time-resolved 
velocity fields, as the laser sheet is completely immersed inside the cavity, and velocities are at 
least 10 times lower than the external flow. 

 
Figure 1: Flow visualizations a) in a (x,y) plane or b) in a (x,z) plane inside the cavity. 

3 PIV velocity field 
Before computing velocity fields from a PIV sequence, the background noise of the recorded 
frames is filtered by the subtraction of a reference frame, recorded with no flow (Faure et al. 
2006). In addition, the regions of the frame situated outside the flow are masked. As the tracers 
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have different diameters and are not scattering the same amount of light, a high-pass filter is 
finally applied to uniform the size of each particle image and for compensation of illumination 
changes. The Reynolds decomposition of velocity between an averaged velocity and a time-
dependant fluctuation is applied on each component. A convergence study inside the cavity 
shows that, in the range of Reynolds number under consideration, the mean and second order 
moments of velocity are converged averaging 600 fields with a relative accuracy within 1%. 
3.1 Mean velocity 
The three-dimensional character of the cavity flow has been recognized in previous studies 
(Faure et al., 2007, Brès & Colonius, 2008, Faure et al., 2009). This is resulting from the cavity 
flow instability (Douay, 2014). However some comparisons of the present cavity geometry with 
two-dimensional analysis can be realized around the cavity symmetry plane (figure 18 in Brès & 
Colonius, 2008). The averaged streamlines are given in a (x,y) plane for four aspect ratios in 
Figure 2. Because of high density of velocity vectors given by the PIV optical flow technique, 
only one streamline out of ten is plotted to keep the figure clear. Note that flow morphology in 
that plane is almost independent of Reynolds number, so we present results only for ReD = 4230. 
The cavity flow is marked by a recirculation characterized by a vortex of spanwise axis and 
located near the downstream cavity wall. According to the aspect ratio variation, the flow exhibits 
one vortex for L/D =1, 1.5 and 2 (Figure 2-b,c,d). This primary vortex is confined to the 
downstream cavity wall and a secondary counter-rotating vortex appears near the bottom of the 
upstream cavity wall for L/D = 1.5 and 2 (Figure 2-c,d). For L/D = 0.5 the primary vortex is 
placed in the upper half of the cavity depth while the secondary vortex is below (Figure 2-a). That 
analysis confirms previous flow visualizations conducted in the same experimental set-up (Faure 
et al., 2009, Faure et al., 2007). As the streamlines are closed, the center of the recirculation is 
easily identified. 

 
Figure 2: Average streamlines of the cavity flow for ReD = 4230 and a) L/D = 0.5, b) L/D = 1, c) L/D = 1.5, d) 

L/D = 2. 

c) d) 

b) a) 
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The dimensionless mean velocity is shown in Figure 3 for L/D = 0.5 and ReD = 4230. In order to 
get a readable view of the cavity flow with small velocity, the color scale is saturated, so the 
external flow appears as a dark red stripe. The mean axial velocity presents a positive region at 
the bottom of the cavity and a negative region at its mid-depth (Figure 3-a), while the vertical 
velocity shows a positive region near the upstream wall and a negative region near the 
downstream wall (Figure 3-b), evidence of a rotating flow confirmed by the modulus (Figure 3-
c). Note that the lower counter-rotating vortex identified in streamlines, is invisible in these 
figures because of its very low velocity amplitude. Similar comments can be done for L/D = 1, 
the recirculation vortex spreading along the cavity length and depth (Figure 4). Note the 
streamlines (Figure 2-b) and x component of velocity (Figure 4-a) which are in a very good 
agreement with the two-dimensional base flow results of Citro et al. (2014), for L/D = 1 and base 
flow Reynolds numbers ReBF = 1370 and 4140. This indicates that the average velocity field in 
the present study is not far from a base flow, in a sense of a global stability analysis. Furthermore, 
the instability is weak, and does not much alter the streamlines that exist in sub-critical flow past 
the bifurcation, as it can be seen from the comparison between the averaged and instantaneous 
fields (Douay et al. 2013). For L/D = 1.5 (Figure 5), the same global morphology is found, with 
an increase in velocity magnitude inside the cavity due to a stronger injection from the 
developing shear-layer oscillations. The same comment is valid for L/D = 2 (Figure 6), the 
recirculation primary vortex is not extending towards the leading cavity wall and its upstream 
part is blurred because of its time-dependence and the average effect. The small relative positive 
and negative regions measured inside the cavity near the edge and the bottom of the upstream 
wall are resulting of laser reflections and are not physical. 
Velocity profiles inside the cavity are plotted, for comparisons with other results, on different 
lines for constant x values, for the mean relative x and y components (Figure 7, Figure 8). For 
each aspect ratio L/D, the first and last profiles are obtained at 2 mm from the vertical cavity 
walls and the other two profiles are distributed in order to get uniform intervals between these 
abscissa. For L/D = 0.5 the primary vortex is limited to the upper half of the cavity, since both the 
axial and vertical velocity components are equal to zero for y < –0.03 m. Apart from the walls 
vicinity, for –0.01 m < y < –0.03 m, there is a negative x component velocity (Figure 7-a) and the 
y component changes its sign at mid-cavity length (Figure 8-a), which characterizes a plunging or 
rising flow. For L/D = 1 the vortex spreads on the cavity depth (Figure 7-b) and the y component 
of velocity still shows a plunging flow near the downstream cavity wall (Figure 8-b). The same 
flow development is found for L/D = 1.5 and 2, with an increase of the modulus of the minimum 
x or y velocity components. 
The comparison of the present experimental cavity flow with the base flow obtained with a global 
stability analysis (Sipp & Lebedev, 2007) is conducted, for the only geometrical configuration 
documented and corresponding to L/D = 1, in the middle of the cavity length (Figure 9). A good 
agreement is found between the velocity profiles. In this figure, the relative vertical distance 
inside the cavity is obtained dividing y by the cavity depth D. The cavity velocity is normalized 
with the cavity velocity Ub, obtained by fitting the measured minimum with the base flow 
obtained by Sipp & Lebedev. It is found Ub = 0.41 m·s–1 corresponding to a Reynolds number 
Reb = Ub D / ν =1366, which is not far from critical Reynolds number value of 1370 found in 
Citro et al. (2014). Thus we can say that the relevant velocity scale inside the cavity is the 
velocity Ub which is proportional to the external flow velocity, confirming previous observations 
(Faure et al. 2007). 
 



6 

 
Figure 3: Mean velocity for ReD = 4230 and L/D = 0.5 a) relative x component ex UU , b) relative y component ey UU , c) relative velocity modulus eUU . 

a) b) 

c) 
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Figure 4: Mean velocity for ReD = 4230 and L/D = 1 a) relative x component ex UU , b) relative y component ey UU , c) relative velocity modulus eUU . 

a) b) 

c) 
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Figure 5: Mean velocity for ReD = 4230 and L/D = 1.5 a) relative x component ex UU , b) relative y component ey UU , c) relative velocity modulus eUU . 

a) b) 

c) 
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Figure 6: Mean velocity for ReD = 4230 and L/D = 2 a) relative x component ex UU , b) relative y component ey UU , c) relative velocity modulus eUU . 

a) b) 

c) 
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Figure 7: Relative x component of mean velocity ex UU  profiles for different positions, ReD = 4230 and a) L/D = 0.5, b) L/D = 1, c) L/D = 1.5, d) L/D = 2. 

a) b) 

c) d) 
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Figure 8: Relative y component of mean velocity ey UU  profiles for different positions, ReD = 4230 and a) L/D = 0.5, b) L/D = 1, c) L/D = 1.5, d) L/D = 2. 

a) 

c) 

b) 

d) 
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Figure 9: Comparison between the longitudinal velocity for ReD = 4230 and L/D = 1 at the relative abscissa x/D = 0.5 

obtained in the present cavity flow and by Sipp & Lebedev (2007) for Reb = 4140 and L/D = 1. 

3.2 Turbulence stress 
Upstream of the cavity and for ReD = 4230, the measured boundary layer displacement thickness 
and momentum thickness are respectively δ1 = 2.65 mm and δ2 = 1.23 mm. The shape factor 
H = δ1/ δ2 = 2.16, indicating that the boundary layer is not perfectly laminar. For the same 
Reynolds number, the turbulence inside the cavity increases with aspect ratio L/D. For L/D = 2, 
we note that the maximum turbulence intensity inside the cavity is 7%, and it is located in a 
region near the downstream cavity edge where the shear-layer impinges (Figure 10). The 
turbulence intensity distribution is not equivalent for the x and y components. Standard deviation 
of velocity fluctuations along the x-axis shows a structure in two lobes distributed on both sides 
of the cavity top-plane while the standard deviation of the y-axis fluctuations exhibits a unique 
lobe centered on the same position. The shear stress shows that the fluctuation along the x and y-
axis are opposite signs above, and of the same sign below the cavity top-plane. Similar 
organization was previously observed (Kuo & Huang, 2001, Basley et al. 2011). The large levels 
measured inside the cavity near the upstream wall are resulting of laser reflections and are not 
physical. 
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Figure 10: Reynolds stress tensor for ReD = 4230 and L/D = 2 a) relative rms value of the x component ex Uu 2 , b) relative rms value of the y component ey Uu 2 , c) 

relative covariance of the x y component 2
eyx Uuu . 

a) b) 

c) 
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4 Parametric analysis 
4.1 Development of instability 
As previously mentioned, for any aspect ratio L/D, the flow within the cavity is driven by a 
primary vortex of spanwise axis. For particular flow conditions, vortices resulting from the 
centrifugal instability develop along the span. They have been observed on flow visualizations 
(Faure et al., 2007, Faure et al., 2009) and PIV measurements (Faure et al., 2008). Two-
component PIV fields in the (x,z) plane are carried out with a large velocity component 
perpendicular to the measurement plane and are subject to measuring noise because the 
magnitude of the velocity modulation caused by these vortices is weak. In order to identify 
centrifugal vortices, different detection criteria are applied to an instantaneous velocity field. 
The vorticity is defined for a 2D velocity field as: 
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The region Q > 0 defines the inner part of a vortex. 
The λ2 criterion is the second real eigenvalue of the tensor T2 + Ω2, where T is the strain tensor 
and Ω the rotation tensor (Jeong & Hussein 1995): 
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λ2 < 0 defines a minimum pressure region, which is a probable vortical region. 
The Γ2 criterion (Graftieaux et al., 2001, Michard & Favelier, 2004) is a normalized kinetic 
moment considering the relative motion around a particular point, it is defined by: 
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A is a circle including the observation point x  and ϕ is the angle made by the two vectors in the 
cross product. The function is not sensitive on the radius R of the circle A and in the present study 
this radius equals the distance between two vectors in the velocity field (Figure 11). Note that this 
criterion is Galilean invariant and can be applied when a vortex is advected by a mean flow. 
Then, Γ2 ranges between −1 and 1 and reaches its maximum value at the center of a vortex. 

 
Figure 11: PIV grid and circle A for Γ2 calculation. 

The comparison between the four criteria previously defined is presented Figure 12 on an 
instantaneous field. The vorticity shows high levels in the instability rows present near the 
upstream cavity edge (Figure 12-a). Q and λ2 criteria get also high values in these regions but fail 
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to clearly identify each individual eddy (Figure 12-b,c). However, the vortical flow instabilities 
are well described with the Γ2 criterion despite the strong velocity component orthogonal to the 
measurement plane (Figure 12-d). Thus, this latter seems to be a relevant filter for noised 
measurements. Note that Γ2 criterion allows seeing the part of the raw of vortices orthogonal to 
the plane near the upstream cavity edge, but also the part of vortices parallel to the plane, in the 
center of Figure 12 between 0.02 m ≤ x ≤ 0.06 m. 

 
Figure 12: Vortex detection criteria on an instantaneous field for ReD = 2300 and L/D = 1.5 in a (x, z) plane: a) 

vorticity Ωz, b) Q criterion, c) λ2 criterion, d) Γ2 criterion. 

From the identification of vortical flow structures on every PIV sequence, a single line is 
extracted from each Γ2 field (black dashed line in Figure 12) and allows building a space-time 
diagram (Figure 13). On such a diagram, vertical patterns are associated with stationary vortices 
while oblique lines are associated with traveling patterns. The lateral drift of the pairs of vortices 

a) 

b) 

c) 
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to the lateral cavity walls is observed. This drift confirms that the influence of the vortices does 
not alter much the averaged velocity flow field, which can be consider as a base flow. It is then 
possible to measure a transverse drift velocity Ws from the maximum slope of equal values in this 
diagram, and their wavelength λ. 
These results are compared with the analysis of flow visualizations (Faure et al., 2009). A good 
agreement is found between this method and flow visualization for the drift velocity Ws (Figure 
14), the dispersion between measurements is the order in magnitude of the uncertainty errors. The 
general behavior is a global arrangement of Ws / Ue with L/D, and a low decrease with Reynolds 
number, followed by an increase for ReD > 6000. Centrifugal instabilities develop along the 
cavity span, so their number is strongly tied to their wavelength. However, the pairs of vortices 
are not always adjoined, so the measurement of an average wavelength seems relevant (Figure 
15). The general trend is an increase of the wavelength with aspect ratio L/D. The instability 
generation is driven by a three-dimensional coupling between the axial and span directions 
(Neary & Stephanoff, 1987). Again, these results corroborate flow visualizations. 

 
Figure 13: Space-time diagram of the Γ2 criterion for L/D = 1.5and ReD = 2300. 

 
Figure 14: Drift velocity Ws of centrifugal instabilities: comparison between PIV measurements (gray symbols) and 

flow visualizations (black symbols). 
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Figure 15: Relative wavelength λ / D of centrifugal instabilities: comparison between PIV measurements (gray 

symbols) and flow visualizations (black symbols). 

4.2 Rayleigh discriminant 
The following discussion addresses the origin and development of three-dimensional instability 
observed in the previous section. It is assumed to be associated with the closed streamlines in the 
cavity recirculation (Brès & Colonius, 2008). That analysis was previously conducted on 
numerical simulations of a backward-facing step (Barkley et al., 2002) and cavity flow (Brès & 
Colonius, 2008). In order to get a stability criterion from experimental data, we consider the 
averaged velocity field as a base state. The centrifugal instability issue was considered by 
Rayleigh (1916), showing that instability may arise in a flow with closed streamlines if there is an 
outward decrease in the magnitude of the angular momentum. The Rayleigh discriminant is 
defined as: 
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where ( )yxr ,  is the radial coordinate from the center (xc, yc) of the recirculation vortex. This 
center is easily measured from the closed streamlines of PIV time-averaged velocity fields 
(Figure 2). Although that position is accurately derived from velocity fields, the Rayleigh 
discriminant is weakly dependent on its value (Brès & Colonius, 2008). Thus, a viscous flow is 
stable if η < 0 and potentially unstable if η > 0. Results are given from fields obtained in a (x,y) 
plane at midspan inside the cavity, for ReD = 4230 for aspect ratios L/D from 0.5 to 2 with the 
same color scale for comparison (Figure 16). The external flow and its injection inside the cavity 
are stable regions. In any case, the region of maximum potentially unstable flow is the external 
part of the recirculation vortex, where the velocity decays with the radius from the center. The 
inner part of the recirculating vortex is stable and corresponds to the region where the velocity 
exhibits a solid-body rotation velocity profile (Chatellier et al., 2004) while the outer region 
shows an azimutal velocity decreasing as 1 / r. For L/D = 2 (Figure 16-d) the boundary of the 
potentially unstable region is a little blurred in the upstream part of the cavity, because of the time 
dependance of the recirculation vortex near the upstream cavity edge. Note for L/D = 0.5 (Figure 
16-a), that the potentially unstable region is mainly identified in the outer part of the upper vortex 
which presents the higher levels. Another observation is the increase of the maximum value of η 
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with L/D keeping ReD constant. That result is predictable since we notice the increase of the 
recirculation strength and turbulence levels when L/D is increased. 

 
Figure 16: Rayleigh discriminant superimposed on averaged flow streamlines for ReD = 4230 and a) L/D = 2, b) 

L/D = 1.5, c) L/D = 1, and d) L/D = 0.5. 

In order to catch the development of centrifugal instability with flow parameters L/D and ReD, it 
is necessary to get a unique value representing the unstable level inside the recirculation. The 
following comments can be drawn on the average of the positive values of Rayleigh discriminant 
inside the cavity ηave: 

− for L/D = 0.5, two recirculation vortices are present along the cavity depth, the flow 
curvature radius is of the order of L = D/2, and the threshold for the observation of 
centrifugal instability is around ηave(x,y) = 1.6×10-4 m3.s-2. 

− for L/D = 1, 1.5 and 2, the recirculation vortex spreads along the whole cavity depth, the 
flow curvature radius is of the order of D, and the threshold for the observation of 
centrifugal instability shows a unique value around ηave(x,y) = 5.5×10-5 m3.s-2. 

If that value ηave is divided by the maximum radial extension of the potentially unstable region 
inside the recirculation di,max, there is a unique threshold for the emergence of centrifugal 
instability and counter-rotating vortices (Figure 17). In addition, the comparison of ηave / di,max 
with flow visualizations (Faure et al., 2009) is provided in that figure, with white-filled symbols 
for absence of centrifugal instability, colored-filled symbol for the presence of centrifugal 
instability and gray-filled symbols for transitional flow. Note that, for a given L/D, values of 
ηave / di,max are increasing with Reynolds number, except for L/D = 0,5 where the transitional state 
is not reached for the larger value of ReD investigated. The threshold for the emergence of 
centrifugal instability is found around ηave / di,max = 8,7×10–3 m2·s–2. 

c) 

a) 

d) 

b) 
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Figure 17: Average Rayleigh discriminant ηave divided by the potentially unstable distance di inside the cavity versus 

Reynolds number ReD , for S/D = 6, with the following notation convention: white-filled symbols no centrifugal 
instability, colored-filled symbols spanwise instability, gray-filled symbols transitional flow, continuous line 

observed threshold. 

It has been demonstrated (Faure et al., 2009) that there is no influence of the span ratio on the 
appearance of centrifugal instability in the range 3 ≤ S/D ≤ 12 (Figure 18). The data for which the 
centrifugal instability is developed are in accordance with the only incompressible configuration 
studied by Brès & Colonius (2008) corresponding, for ReD > 1500, to a case of 2D stable and 3D 
unstable flow. This experimental observation of the development of the centrifugal instability is 
strengthening the three dimensional nature of the flow previously mentioned. Therefore the flow 
dynamical properties inside the cavity can be reduced to two dimensionless numbers ReD and 
L/D. However, a preliminary study for S/D = 12 shows that the threshold for the occurrence of 
centrifugal instability is around ηave / di,max = 5×10–3 m2·s–2 for ReD = 2130. Thus, the 
recirculation curvature radius may be not the only parameter that drives the centrifugal instability. 
Lateral confinement should also play a role since there might be a lower threshold when the 
lateral wall influence is lowered. The increase of S/D and the invariance of the development of 
centrifugal instability, in terms of critical values for ReD and L/D, should be linked with a 
decrease of the threshold for ηave / di,max. The higher value of the threshold ηave / di,max for S/D = 6 
should be related to a longer cavity mouth L and a larger development of the Kelvin-Helmholtz 
instability in the shear-layer. This latter result should confirm the conclusion that three-
dimensionality is connected to centrifugal instability previously mentioned (Brès & Colonius, 
2008). 
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Figure 18: Existence diagram of centrifugal instability vortices versus ReD for S/D = 12 (squares), S/D = 6 (triangles), 

S/D = 3 (circles) with the following notation conventions: white-filled symbols no centrifugal instability, colored-
filled symbols spanwise instability, gray-filled symbols transitional flow (Faure et al., 2009). 

4.3 Taylor-Couette analysis 
It has been shown that the recirculation vortex presents two distinct regions from its center, an 
inner region of solid-body rotation and an outer region where the velocity decreases radially. We 
can wonder whether the instability is a Taylor-Couette instability, which is a peculiar type of 
centrifugal instability, considering the inner region as a rotating cylinder, the external cylinder 
being the cavity walls. Of course, that approach is only an indication, because considering the 
flow confined between two cylinders is a crude approximation of the recirculation inside the 
cavity. If a Reynolds number ReΩ is defined from the rotational velocity Ω of the inner cylinder, 
Taylor-Couette instability develops beyond a critical Reynolds number ReΩ,c (Tritton, 1988, 
Drazin & Reid, 1981), which can be defined in the cavity recirculation as: 
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 (6)       

with Uc the convection velocity, i.e. the maximum azimuthal velocity inside the cavity, Rc the 
radius of curvature and r the external radius, i.e. the distance between the recirculation vortex 
center and the nearest wall. These data are provided from PIV measurements. Figure 19 shows 
the evolution of ReΩ versus ReD for S/D = 6. We observe that for any aspect ratio L/D, the 
vortical instability is observed for Reynolds numbers ReΩ lower than critical Reynolds number 
ReΩ,c except for L/D = 2 and ReD = 4200. This is the evidence that cavity centrifugal instability 
cannot be identified with Taylor-Couette instability. 
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Figure 19: Threshold of the critical Reynolds number for Taylor-Couette instabilities ReΩ,c (lines) versus ReD  

(symbols) compared with the measured Reynolds number ReΩ,c, for S/D = 6 and four aspect ratios L/D with the 
following notation conventions: white-filled symbols no centrifugal instability, colored-filled symbols spanwise 

instability, gray-filled symbols transitional flow. 

4.4 Görtler analysis 
If we consider the development of vortices induced by the recirculation curvature, we can 
compare it with the flow on walls with concave curvature leading to Görtler instability. The 
Görtler number, defined from the curvature radius Rc, the kinematics viscosity of the fluid ν and 
the velocity inside the cavity Uc developing away from the boundary layer of momentum 
thickness δ2 is: 
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c  (7)       

Values of Görtler number and dimensionless wavenumber are obtained from PIV measurements 
and are plotted in Figure 20 in comparison with data of previous experiments. The linearized 
neutral stability curve established by Floryan & Saric (1982) is also plotted on the figure. Hall 
(1982) concluded that this concept was not meaningful in Görtler boundary layers except in the 
small wavelength asymptotic limit (Schrader, 2011). Lee & Liu (1992) later revised this view 
which was resurrected by Bottaro & Luchini (1999), finding it satisfactory above a given value of 
the local Görtler number. The aim of present study is not to discuss the validity of that theory, but 
to plot present results for cases where centrifugal instability is developed and compare it with 
previous experimental results and the existing theory. A global clustering of points with previous 
experiments is found, above the neutral curve corresponding to the region where the Görtler 
instability is able to develop. 
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Figure 20: Görtler number versus the dimensionless wavenumber for present measurements and previous ones. 

4.5 Stability parameter 
As we previously mentioned, the Rayleigh discriminant is sensitive to the recirculation curvature 
radius and its lateral confinement. Furthermore, the criterion gives information only on regions 
where the flow is potentially unstable. To get rid of this limitation, a viscous stability parameter 
for centrifugal instabilities was introduced by Migeon (2000), initially for transient flows, but it 
can be generalized to time-averaged fields. One can argue that other criteria for centrifugal 
instability identification exist (Sipp & Jacquin, 2000), but that stability parameter was chosen for 
a comparison with the aforementioned data of Migeon (2000). For a viscous flow, viscosity tends 
to stabilize the flow. Therefore there is a competition between destabilizing centrifugal forces and 
viscous stabilizing forces. Each of these forces tries to diffuse its action. The characteristic time 
of diffusion depends on the nature of the force but also on the flow conditions, such as the 
velocity or the cavity geometry. The ratio between the characteristic time of stabilization and the 
time of destabilization defines the stability parameter. A cylindrical coordinate system is used, 
with its origin taken in the center of the transverse axis vortex. Eight radial profiles are studied, 
defining eight azimuths θ, the reference azimuth θ = 0 associated with the straight line passing by 
the vortex center and the downstream cavity edge (Figure 21). The stability parameter is then 
defined as: 

 
c

iic

R
ddU

C
ν

===
 timeingdestabiliz

 timegstabilizin
effect  viscousgstabilizin

effects lcentrifuga ingdestabiliz  (8)       

Uc is the maximum velocity of the recirculation vortex measured for azimuth θ, Rc the curvature 
radius for which Uc is measured, ν the fluid kinematic viscosity and di is the length of the 
potentially unsteady region for azimuth θ. The length di is a dimension along with the flow is 
unstable in the sense of Rayleigh discriminant, it is the distance between the maximum of (r Uθ)2 
and the intersection of Uθ with the r-axis (Figure 22). 
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Figure 21: Radial profiles extracted from the average PIV field for L/D = 1 and ReD = 4230. 

 
Figure 22: Velocity Uθ and (rUθ)² radial profiles for the azimuth θ2, L/D = 1 and ReD = 4230. 

As the flow is not perfectly circular inside the cavity, the stability parameter C is corrected with a 
shape parameter Ps to take into account the stretching of the recirculation vortex such as for θ1, 
Ps = 1, for θ2, Ps = Rc,1/Rc,2, for θ3, Ps = Rc,2/Rc,3, for θ4, Ps = Rc,3/Rc,4, and for θ5, Ps = Rc,4/Rc,5 
providing: 
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The stability parameter development inside the recirculation cavity flow is shown Figure 23 to 
Figure 26, for four aspect ratios and different Reynolds numbers. A general increase of C with 
ReD is observed. For L/D = 0.5 (Figure 23), a maximum is observed around the angle θ3. It is 
found for angles between θ4 and θ5 for L/D = 1, 1.5 and 2, where the potentially unstable region 
gets a larger extension and the cavity wall confinement is lower in the upstream part of the cavity, 
relatively to the external flow direction. 

di 
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η < 0 

unstable
η > 0 

θ = 0 

θ1 

θ2 θ4 θ3 
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Figure 23: Stability parameter C versus azimuth θ for different Reynolds numbers and L/D = 0.5. 

 
Figure 24: Stability parameter C versus azimuth θ for different Reynolds numbers and L/D = 1. 
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Figure 25: Stability parameter C versus azimuth θ for different Reynolds numbers and L/D = 1.5. 

 
Figure 26: Stability parameter C versus azimuth θ for different Reynolds numbers and L/D = 2. 

Comparison of the stability parameter in the present case of shear-layer-driven cavity flow with a 
lid-driven cavity flow (Migeon, 2000) is presented in Figure 27 for the same order in magnitude 
of Reynolds numbers and L/D = 1. Larger values of C are observed for the lid-driven cavity in 
comparison with the shear-layer open flow. C is continuously increasing to the angle θ5 for the 
lid-driven cavity while a decrease is observed for the shear-layer-driven cavity, with lower 
values. Thus the instability level is continuously growing inside the recirculation for the lid-
driven flow while it presents two maxima for angles θ2 and θ4 for the shear-layer-driven flow and 
ReD = 4230. The spatial generation of centrifugal instabilities takes place in different regions 
between these two cases, although they show a similar quasi-annular shape. 
Comparison of the maximum value of C with the identification of centrifugal instabilities, in flow 
visualizations or Γ2 fields obtained from PIV measurements, leads to a unique threshold for their 
generation, varying the Reynolds number and the aspect ratio L/D. In the present study, where the 
recirculation is induced by a shear-layer, the threshold is 25. If this value is compared to the one 
found for a recirculation induced by a lid-drive, the threshold found is 80 (Migeon, 2000). As a 
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consequence, it can be said that the shear-layer-driven cavity flow is more unstable than a lid-
driven cavity flow. This is confirming the analysis of Sipp & Lebedev (2007), where the 
instability developing on the shear layer has a strong nonlinear entrainment effect on the inside 
cavity flow field. This result could explain the difficulty of the observation of vortices resulting 
from the centrifugal instability in the latter case, where wall surface perturbations have been 
introduced to force their generation (Migeon, 2000). 

 
Figure 27: Azimuthal development of the corrected stability parameter for a shear-driven open cavity and a lid-

driven cavity (Migeon, 2000) for L/D = 1. 

5 Conclusion 
An open cavity flow driven by the shear-layer development between a boundary layer external 
flow and a recirculation is investigated with PIV for Reynolds numbers in the range 1900 to 
12000 and aspect ratios between 0.5 and 2. The global features show that the cavity flow is 
characterized by a vortex recirculation and large velocity and turbulence levels are found near the 
trailing cavity edge where the shear-layer impinges the wall. Development of quasi-annular pairs 
of counter-rotating vortices is observed for particular parameters, suggesting the rise of a 
centrifugal instability. These vortices are moving towards the lateral cavity ends; their 
wavelengths and lateral drift velocity are measured from PIV and compared with data obtained 
from flow visualizations obtained on the very same experimental set-up. Rayleigh discriminant 
measured from the time-averaged velocity field shows that the potentially unstable flow region 
inside the cavity is the external part of the recirculation vortex. Comparisons cases where pairs of 
counter-rotating vortices are found versus Reynolds number demonstrate that there is a unique 
threshold of the ratio between the characteristic value of Rayleigh discriminant and the 
potentially unstable distance. The cavity flow analogy with Taylor-Couette flow theoretical 
behavior does not seem to provide satisfactory agreement, whereas the confrontation of present 
experimental data fits with Görtler neutral stability theory. A stability parameter considering the 
ratio between centrifugal destabilizing effects and stabilizing viscous effects is conducted 
establishing a unique threshold for a value of that parameter equals to 25 for the present open 
shear-layer-driven cavity. Available data for a lid-driven cavity exhibit a threshold of 80. Thus, 
the difference between the two cases proves that the shear-layer-driven cavity flow is controlling 
the recirculation cavity flow by momentum injection and ejection, providing a lower level of the 
threshold for the centrifugal instability development. It would be interesting to extend the present 
study for different values of the span ratio in order to get a global behavior of the cavity flow. In 
addition, time-resolved PIV would be useful performing the same parametric analysis on time 
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evolving velocity fields to understand the controlling effect of periodic shear-layer injection 
mechanism. Global stability analyses of cavity flows are available for compressible flow and 
L/D = 1, 2 and 4 (Brès & Colonius, 2008) or incompressible flow and L/D = 1 (Sipp & Lebedev, 
2007, Citro et al. 2014) and L/D between 1.2 and 3 (Meseguer-Garrido et al., 2014). The 
extension of that approach, for incompressible flow, to other values of L/D is an interesting 
perspective of this work. Furthermore, the confrontation of the experimental results obtained in 
this study with the ones obtained with the global stability analysis would be interesting to verify 
the thresholds established with the present stability parameter. 
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