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Reynolds Stress Transport Equations in a Momentumless
Wake: Experiments and Models

Thierry M. Faure™
Ecole Centrale de Lyon, 69 131 Ecully, France

The determination of the transfer terms in the Reynolds stress transport equations is an important issue in
the improvement of closure models in turbulence. A part of these efforts is to provide accurate experimental
information on each term of these equations and, particularly, on the pressure-strain term. The self-similar region
of the momentumless wake of an axisymmetric, propeller-driven body is studied to enable the required balances of
the Reynolds stress transport equations. The axial and azimuthal balances show that the flow is mainly dominated
by convection. For the shear equations, there is a quasiequilibrium between production and pressure strain, except
in the center of the wake. Comparisons are made between the experimentally determined distributions of pressure-
strain terms and the corresponding distributions predicted by second-order closure models. The quasi-isotropic
model and the isotropic production model do not predict well the amplitude of the pressure-strain term. Fu’s model,
calibrated for a strongly swirling recirculating jet, gives the best results in comparison with experimental data.

I. Introduction

EYNOLDS stress transport equations are important for un-

derstanding physical phenomena in a flow, mainly because of
the wide use of second-order closure models in turbulent numerical
codes. The aim of the present study is to investigate the momentum-
less axisymmetric wake of a propeller-driven body, where the drag of
the body is completely canceled by the thrust created by the propul-
sion system. For this kind of flow, however, very few experimental
data are available, and no Reynolds stress balances have been pub-
lished. Note that these results are available for wall-bounded flows
such as a manipulated boundary layer,' a wing/body junction,? and
the flow around a surface mounted cube.? However, for nonbounded
flows, these budgets are given only for plane jets,* axisymmetric
jets,%*6 and two-dimensional wakes.” We provide measurements of
the balances for the self-similar region of a momentumless wake
tested in a wind tunnel. For that wake, the flow is characterized by
a mean azimuthal velocity, a component that does not exist in the
case of a jet-driven body.?-® The experimental determination of these
balances permits the radial evolution of the pressure-strain term to
be obtained. A comparison between this term and the one given
by classical second-order closure models is presented. Different ex-
pressions for this term, determined for shear flow with swirl!®!! or
without swirl 2 are tested.

II. Experimental Arrangements

The wake is generated by an axisymmetric, streamlined body,
mounted in the working section of a wind tunnel (500 x 500 mm,
6 m long). The experimental freestream velocity can vary from 5
to 80 m/s with a uniformity of +2% and a maximum turbulence
intensity of 0.7%. The model has a diameter of 8 cm and a length
of 50 cm (Fig. 1). It has an elliptical nose, a cylindrical middle
section and a conical stern. The propulsion system consists of a
three-blade marine type propeller with a diameter of 4 cm. The
inside of the body is hollow and contains the motor (15,000-rpm
maximum speed), which drives the propeller. An electronic system
is available to control the rotation speed. A supporting device having
a symmetrical NACA 66, 012 profile with a chord of 10 cm and a
maximum width of 1.2 cm was chosen to minimize aerodynamic
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perturbations around the body. Electrical wires for power supply
and speed regulation are mounted inside this support. An alignment
system permits the model to fit with the freestream flow. Once this
adjustment is made, the angle between the wake axis and the tunnel
axis was found to be less than 0.3 deg.

For a self-propelled body, the drag generated by the model equals
the thrust created by the propulsion system. These quantities could
be obtained by the measurement of the support force on the body.
Unfortunately, a direct determination of this force was not avail-
able in this study. Thus, to bring about self-propulsion, a mo-
mentum balance was established for the model. To this effect, we
had two parameters that were able to vary, the freestream velocity
and the propeller rotation speed. The propeller rotation was fixed
at its maximum value, and the freestream velocity was varied to
make the drag equal to the thrust. In Fig. 2, the thrust minus drag
balance is normalized by the upstream momentum flux and plot-
ted vs the freestream velocity. The different quantities of this bal-
ance were measured with a five-hole pressure probe, which gave
the mean velocity and pressure. Note that the probe generates a
nonlinear averaging function in the estimate of pressure in a tur-
bulent flow. As a consequence, it produces an uncertainty in the
determination of the balance. Mean velocities have been checked
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Fig. 4 Time sample of the angle a = arctan (V/U) for the maximum
turbulence intensity point (x/D = 0.44r/r* = 0.6).

with the hot-film measurements. Self-propulsion was realized with
a freestream velocity of 11.6 = 0.25 m/s; the uncertainty is due
to the pressure estimate and the freestream velocity deviation. The
corresponding Reynolds number based on the diameter of the body
was Re = 5.8 x 10%.

The flow is three dimensional and turbulent; it is, therefore, neces-
sary to use a directional probe that can measure both the mean and
the fluctuating parts of the velocity. An automated triple hot-film
anemometry system, which has been developed in the laboratory,
gives all three components of instantaneous velocity. The probe
is a Dantec 55R91 type, with the active lengths of the three sen-
sors included into a sphere of diameter d = 1.2 mm. The smallest
Kolmogorov microscale is 7 = 0.4 mm, which is in comparison
with the measurement volume according to the relationd < 3—47
given by Wyngaard and Pao.'® Each sensor is a nickel film deposited
on a quartz cylinder, 70 m in diameter. The three film supports are
orthogonal and inserted into a sphere of 3 mm diameter (Fig. 3).
This dimension corresponds to the Taylor scale of the structures en-
countered in the flow. Calibration of each sensor is performed in the
unperturbed freestream. From calibration data, three King’s laws
are determined for each film. Then, the probe is carefully adjusted
with the flow to use Jorgensen’s geometric relations.

Figure 4 shows a time sample of the angle o between the radial
and axial velocity components for the location in the wake where the
flow is strongly marked by the blade passage influence and where
the maximum turbulence intensity is measured. For this position, o
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Fig.5 Temperature drift effect on the calibration curve and its correc-
tion for hot-film number 1.

reaches its maximum value. Note the peaks in the sample, distributed
every 1.3 ms and linked with the periodic blade passage, which
generates a rapid change in the velocity direction. Nevertheless, this
angle remains inside the 15-deg acceptance cone, which is the limit
for unambiguous velocity determination with a triple sensor probe.

When an experiment is performed, a long time is necessary to
move the probe after data acquisition at each point of measurement,
leading to a long experimental time (typically, 4 h). As a conse-
quence, the ambient temperature during measurements may change
and can affect the data processing because the calibration curves
can be modified with the temperature. Film aging or contamination
problems may introduce similar effects in these curves. Thus, peri-
odic verification is carried out during the acquisition procedure: the
probe is placed in the freestream from time to time and a calibration
point obtained for each film. As part of the signal processing, such
points are used to update the calibration curve. Figure 5 shows two
calibration curves (output voltage vs cooling velocity) for sensor 1
plotted for two ambient temperatures with a 2°C temperature drift.
The solid line is the corrected curve for the calibration achieved for
T = 10°C when it is used to process data acquired at temperature
T = 12°C. The agreement between the corrected curve and the
calibration curve performed at 12°C is very good because a devia-
tion smaller than 0.94% is found. The films are operated as constant
temperature anemometers at an overheat ratio of 0.8. The anemome-
ter is a 3-channel TSI IFA 100 type including a conditioner unit
for each channel. Output voltages from the anemometer are passed
through buck and gain circuits. To avoid aliasing, the signal should
be low-pass filtered at a cutoff frequency that is half the sampling
frequency. The low-pass filters, which are identical for each con-
ditioner unit, are third-order, —18-dB per octave, Sallen-Key type.
The phase shifts introduced are identical; the cross spectra between
the measured voltages delivered by each channel were checked that
no phase deviation was detected. Then, the data are digitized with a
12-bit A/D converter. Three types of acquisition were necessary for
a single point of measurement, to determine correctly the desired
quantities: 1) a sampling frequency of 4 kHz, to measure the mean
and the second-order moments of velocity components; 2) a sam-
pling frequency of 7.5 kHz with a sample of at least 20 s to obtain
the convergence of third-order moments; and 3) a sampling fre-
quency of 50 kHz for a good estimate of spectra E;; and an accurate
evaluation of the dissipation function.

The data are stored on the hard disk of a 80386 PC computer for
later processing. The various error sources all along the acquisition
procedure are carefully identified (see Ref. 14). They are as follows.

1) The conditioning error is due to the buck and gain process
of signal before treatment. In this study, the values delivered by
the signal conditioning unit were checked, and do not generate any
voltage deviation.

2) The digital error is due to signal sampling. This error is max-
imized in the case of no previous signal conditioning (gain = 1,
buck = 0). In the present study, where the voltages were optimized
before sampling, this error is found to be less than 0.04% and can
be neglected.



3) The thermal response variation of the sensor is a potential
error source in the processed velocity. Here, a temperature variation
is corrected in the previously mentioned way, leading to a maximum
deviation of 0.94%. If this procedure is not carried out, a variation
of 2°C between the calibration temperature and the measurement
temperature can induce errors of 12.5% in the mean velocity.

4) The signal treatment error is due to the inversion of the voltages
delivered by the anemometer, into the velocity components. From
the range of velocity processed in this study, the corresponding error
is 0.33%.

5) The statistical treatment error is related to the moment of veloc-
ity measured. The average time has to be adjusted with the desired
moment. Note that for velocity moments greater than one, this is the
only important error source. In this work we found statistical errors
of 0.43% for mean velocity, 1.4% for second moments, and 2.7%
for triple moments.

Finally, the maximum global measurement errors were found to
be 1.7% for mean velocity, 1.4% for second-order moments, and
2.7% for third-order moments.

III. Reynolds Stress Transport Equations

We consider a simplified expression for each Reynolds stress
transport equation, using a boundary-layer approximation! that
is based on an analysis of the order of magnitude for each term.
This is justified because measurements are carried out in the self-
similar part of the wake.!6 In Fig. 6, the turbulent kinetic energy
g% = 1/2@u? + v2 + w?), where u, v, and w are, respectively, the
velocity fluctuations for the axial, radial, and azimuthal directions, is
normalized by its local maximum value g2, (x/ D). The radial coor-
dinate is scaled with the radius of the wake r* defined as the location
at which the axial turbulence intensity had fallen to half of its maxi-
mum value. The same profileis found for any axial position, illustrat-
.ing self-similarity of the turbulent flow in the far wake. Then, each
Reynolds stress transport equation can be written as the balance,

C,‘j =P,-j+T,-j-+T,-§+I'I,~,-—s,-,- (1)

where the terms denote convection Cj;, production F;;, turbulent
transfer T,} pressure transfer T;2, pressure-strain I1;;, and dissi-
pation —g;;, respectively. Their general expressions in Cartesian
coordinates are

- dum; au; aU;

C; =U,—2L P = —wiup — — Wig—

/ * axy 4 W 0x; L 0xi
Ou; U Uy, o (pu;i u;

4 dx;, y axe \ p * * £
)4 8u,~ auj 8u,~ Bui
Mj=={—+— & =2v——
=0 (ax,- * =Y o oy

where §;; is the Kronecker symbol. The subscripts denote the axes.
Repeated dummy indices in a multiplication denote summation. In
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Fig.6 Self-similar turbulent kinetic energy profile.
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a wake, the molecular diffusion is neglected because there are no
wall effects.

The method used to experimentally determine the Reynolds stress
transport balances is similar to the one described by Browne et
al.'7 Each term of the equation is measured except for the pressure
transfer and pressure-strain terms, which are determined from the
overall balance. The axial gradient, appearing on the convection
term, is defined from the self-similar form

m:rujm(x/D)h;j(r/r*)

where w;u;, is the maximum value of %;u; at station x/D and
r/r*(x/D) is the radial similarity variable. Thus,

du; _ [ Gty (2, (T
ax | dx \D/) "\,
x\ r dr* [ x dh;; r
—un (=)l ——(= — D
“ u""(D)r*z dx (D)d(r/r*) (r)]/

A least-square spline fit is first applied to the data on h;;(r/r*)
before numerical differentiation yielding dh;;/d(r/r*). The radial
derivatives of these quantities that appear in the production terms
are obtained in a similar way. The three third-order moments of the
turbulent transfer terms can be measured directly, thanks to the triple
hot-film probe.

Dissipation of turbulent kinetic energy ¢ is determined by means
of an isotropic formulation,

du
= 15v| —
. u(ax)

The integration of the dissipation spectrum is preferred to avoid
the influence of the energetic part of the spectrum in the estimate of
the dissipation function

2

oo
= ISv/ K} Eqy (ky) diy
0

The reliability of this expression is good because the Reynolds
number, based on the turbulent velocity and the Taylor scale, is
around 140. In addition, Fig. 7 shows the comparison between the
dissipation spectrum k? Ey; (k) and two spectra of the radial velocity
determined in different ways: the first one is the measured spectrum
E(k;) and the second one is calculated with the isotropic for-
mulation from measurements of the spectrum of the axial velocity
E (k) (Ref. 18). We note that in the range of wave numbers where
dissipation reaches its maximum, the agreement between the two
spectra is good. The dissipation of the Reynolds stress transport
equations &;; is determined from the dissipation of turbulent kinetic
energy &,
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Fig. 7 Comparison between the dissipation spectrum and the mea-
sured and isotropic v spectra.
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Fig. 8 Self-similar profile of convection for the axial Reynolds stress
equation.

For the axial, radial, and tangential equations this term exists, and
it vanishes in the shear stress equations.

All of the results presented are carried out in the self-similar far
momentumless wake, for axial distances from the trailing edge of the
propeller x/D > 17.5. Note that the balances are nondimensional
and normalized by

F% / r

Self-similarity is pointed out in the convection term for the axial
Reynolds stress equation (Fig. 8), where the different symbols are
associated to different axial locations in the wake. This self-similar
behavior is also checked for the other terms and other equations.

The distributions of the axial, radial, and tangential Reynolds
stress transport equations and the axial-radial and radial-tangential
shear transport equations are given. For the axial and tangential
equations, the pressure transfer vanishes and the pressure strain is
determined from the balance. For the radial Reynolds stress equation
and the shear stress equations, both of these terms exist; the pressure
transfer term is determined with the relation given by Lumley!® for

homogeneous and nonisotropic turbulent structures that are the most

important for transfer:
Pui/p ~ —1q%u; )]

Note that this term is very small in comparison with pressure strain.
However, this result was expected. The large-eddy simulations of
Shao et al.?® of a shearless turbulent mixing layer shows that the
constant -51- is an overestimation, and pressure transfer can be easily
neglected.

Then, the pressure strain is determined from the balance. The
residual errors of the various measured transport terms are the
pressure-strain error, because it is balanced from the other terms.
This error is estimated around 20% in the inner part of the wake,
and decreases to 5% in the outer region.

The axial, radial, and tangential Reynolds stress equations in
cylindrical coordinates for an axisymmetric flow, after the boundary-
layer approximation, are given by
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Fig.9 Axial Reynolds stress balance.
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Fig. 10 Radial Reynolds stress balance.
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Fig. 11 Tangential Reynolds stress balance.

where U, V, and W are the velocity components for the axial, radial,
and azimuthal directions, respectively. Note that there is no pressure
transfer term in Egs. (3) and (5).

Afterward, all of the terms for each Reynolds stress transport
equation are plotted with their signs. All of the balances are dimen-
sionless, and the radial direction is normalized with the radius of
the wake r*. We can observe from the balance of the axial equation
(Fig. 9) that this flow is mainly dominated by convection, which
indicates that the turbulence generated by the propeller is carried
downstream in the far wake. Dissipation is continuously decreas-
ing in amplitude from the center to zero in the freestream, while
production reaches a maximum around r/r* = 0.6. The balance
of the radial equation (4) shows a convection that is not more im-
portant than other transfers (Fig. 10). Turbulent transfer reaches a
minimum around r/r* & 0.4 and a maximum at the boundary of
the wake (r/r* = 1.1) that indicates a change in the energy redis-
tribution between these regions. Other information can be obtained
from the balance of Eq. (5), which points out an important ampli-
tude for the convection term, due to the propeller rotation influence
(Fig. 11). This term almost equilibrates the sum of pressure strain
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Fig. 13 Radial-tangential shear balance.

and dissipation. A contraction of Egs. (3-5) brings the kinetic energy
balance, in which no pressure-strain term occurs due to continuity
(see Refs. 14 and 16).

Similar results are presented for the axial-radial shear equation

e e e e 6
r p8r+pp3r ©®

In that case (Fig. 12), an equilibrium between production and pres-
sure strain is established away from the wake axis while convection
makes up for turbulent transfer. The axial-tangential shear balance
is not significant because of the axisymmetry of the flow.

The distribution for the radial-tangential shear equation is given
in Fig. 13:

_tw . W — — =W =W 2
Uﬂ_*_z(vz_wz):_vzﬂv__i_wzy._zﬂ
0x r ar r r
w 9w 1dpw 1 dv 1 ow
e +—pz+-p— M

r ar p or pr- 96 p° or

Production is dominant and generated by the mean azimuthal ve-
locity gradient. As for the previous equation, we note an equilibrium
between production and pressure strain for r/r* > 0.3.

IV. Pressure-Strain Term

We present results of the comparison between the pressure-
strain term balanced from the measurements and the corresponding
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distributions given by classical models. The pressure strain may be
divided into three parts:

I = I + IT; + I ®

where the first term is denoted the rapid or linear part, the second one
is the slow or nonlinear part, and the third one is associated to the
wall effects and will be zero in the present case. Afterwards, several
models for the rapid part will be tested, together with a single model
for the slow part proposed by Rotta.2! Its expression in Cartesian

coordinates is
I, = _qg<—"ﬁf - —5,-,) ©)
¢ 3
Different values for the constant ¢; are set according to the model
used for the rapid part.
Two models, given by Launder et al.,'? are tested for the rapid

part of the pressure strain. The first one is the quasi-isotropic (QI)
model

Imj; = —y (P — $Pé&;) (10)

The second one is the isotropic production (IP) model

o+ 8 2 8¢, — 2 2
r=—2 P —ZP&; ) - D;; — S P§;;
L 11 (P’ 3 f) 11 ( 73 ’)

30c, —2 (80 | 3U;\— _
Pt NI | Poest, I i/ 11
55 (axj r )q (I
with
Py U AU,
P= —2— and D,'j = —(u;uka—]cj + ujuka_x,-—>

For an axisymmetric flow, the expressions are available in Ref. 22.

For the QI model, the single set ¢; = 1.5,¢c; = 0.4 is used.
Three sets of values are tested for the IP model, ¢; = 1.5,y =
0.6 (denoted IP 1), which are the first values published in Launder
etal.'’?;c; = 1.8, y = 0.6 (denoted IP 2), which were later adjusted
by Launder,” where the relation (1 — y)/¢c; = 0.23 is validated;
and ¢; = 3,y = 0.3 (denoted IP 3), which were adjusted for
a swirling jet by Gibson and Younis.!® The last model tested is
proposed by Fu et al.!! for a strongly swirling, recirculating flow.
In that expression, the rapid part of pressure strain is calculated not
only from production but also from convection:

I}, = —y (P — 3P8; — Cij + $C8y) (12)

with C = Cy. The constants ¢, and y keep the same values as for the
IP 1 model. Afterwards, the evolution of the pressure strain given by
the several models for the rapid part, in relation with Rotta’s model
for the slow part, is determined from the measurements of first- and
second-order moments of velocity. The gradients that appear in these
expressions are calculated in the same way as for the production
terms.

We note in Fig. 14, for the pressure-strain term of the axial
Reynolds stress equation, that the IP and QI models give the shape
of the measured term for r/r* > 0.5, but with a lower level than the
measured one. There is very little difference between the predictions
of IP 1, IP 2, IP 3, and QI. Fu’s model is the best one, predicting
well the amplitude and the shape of the measured distribution. The
pressure-strain term for Eq. (5) is compared with the distributions
given by the same models in Fig. 15. It is clear that Fu’s model is
the only one that is able to predict the evolution of the term in the
center of the wake, even if there is a difference of about 45% on the
amplitude.

The results for the axial-radial shear are shownin Fig. 16.Itcanbe
seen that the pressure-strain term predicted by Fu’s model is in very
good agreement with data, only the peak level around r/r* = 0.4 is
slightly underestimated. The IP 1, IP 2, and QI models give similar
results, with a lower level than Fu’s model, but do not predict well the
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Fig.14 Comparison between measured and calculated pressure strain
for the axial equation.
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Fig.16 Comparison between measured and calculated pressure strain
for the axial-radial equation.

evolution near the center. The IP 3 model brings the worst behavior,
with a peak level about 50% of the experimental value.

The same comments are valid for the radial-tangential shear equa-
tion (Fig. 17), where IP 1, IP 2, and QI estimate the measured max-
imum within about 60% and Fu’s model is about 80% of this value,
whereas the IP 3 model is almost zero. This surprising difference for
this last model calibrated for a swirling jet may lie in the weakness
of the swirl and the simple configuration (established jet), whereas
Fu’s model, calibrated for a strongly swirling recirculating jet, could
be applied to many other swirling flows.
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Fig.17 Comparison between measured and calculated pressure strain
for the radial-tangential equation.

V. Conclusion

The different terms of the Reynolds stress transport equations are
measured or deduced from the balance, in the momentumless wake
of a propeller-driven body. The importance of the convection term
in the axial and tangential equations is shown.-For the shear equa-
tions, a quasiequilibrium between production and pressure strain is
established away from the axis of the wake.

Comparisons are made between the experimentally determined
evolution of the pressure-strain terms and the corresponding predic-
tions of classical closure models. For any equation, we notice that
Fu’s model, given for a strongly swirling flow, is very close to the
measured terms in the present study. The IP and QI models give a
prediction of the shape for pressure strain, away from the center,
but underestimate the amplitude. Gibson’s model gives an awkward
prediction of pressure-strain terms and should not be appropriate for
this momentumless rotating wake. This result shows that convection
must be an important parameter in the modeling of a momentumless
swirling flow.
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