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Abstract This paper is concerned with the array shape self-
calibration problem when the array gain pattern of each sen-
sor is spatially dependent and unknown. We adapt a Constant
Modulus Approach (CMA) to improve the precision in the
sensor localization. We will see how this original method
conducts to build particular antenna configurations appropri-
ate for self-calibration. The performance improvement lies in
a strong bias reduction.
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1. INTRODUCTION

Array processing algorithms for source localization can
severely be degraded by uncertainties in the array shape.
When flexible antenna arrays are used (consider for example
an airborne antenna fitted under the wings), their actual shape
can widely deviate from the nominal geometry. In such sce-
narios, the associated superresolution array processing dra-
matically fails, leading to high spatial ambiguity sidelobes.
It is well known that array shape self-calibration techniques
can provide an estimation of sensor location using unknown
narrow-band and far-field sources impinging on the array.
Most of these methods suppose the array to be composed of
isotropic sensors (see [1], [2], [4]). When the gain pattern
of each sensor is spatially dependent and unknown, these ap-
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proaches lead to biased estimated locations, this bias depend-
ing on the array deformation level.
In this paper, we propose to reduce significantly the sensor
position estimation bias when the antenna can be considered
as composed of several subarrays. Each subarray is made
up of two sensors (with unknown but identical gain patterns)
whose orientations are almost identical. Position and direc-
tion of the first subarray are assumed to be known. When the
array is distorted, we reasonably assume that the deforma-
tion inside a subarray is negligible, and consequently the two
sensors have the similar gains whatever the source bearing.
Under this assumption, we develop a Modulus Compensation
Algorithm (MCA) in order to estimate the position of each
sensor.
N being the number of sources, the algebraical derivations
conduct to the joint-diagonalization ofN Hermitian matrices
of rank 1 built from the Singular Value Decomposition of the
spatial covariance matrix. We prove that the number of sub-
arrays must be equal to or greater than N2 N in order to
satisfy the identifiability conditions.
Numerical simulations are provided in the two-dimensional
case. Several configurations of antenna are compared. The
environmental field involves sources with unknown parame-
ters and additional Gaussian noise. Our approach is compared
to the previous quoted algorithms and exhibits better perfor-
mance.

2. BACKGROUND

We consider N distinct sources radiating unknown narrow-
band s (t) centered at the same pulsation w and received by a
M-sensor antenna with unknown geometry. Localization of
sources is unknown but assumed to be far enough from the
array so that the signal wavefronts are planar. Moreover, we
assume that the spatial diversity is full i. e wavefront normal
vectors nj are not two-by-two collinear. Finally and to sim-
plify, we only consider the case where both the Directions Of
Arrival (DOAs) nj of the sources and the array are coplanar.

Source DOAs being unknown, "observability" of the sensor
localization requires that at least the coordinates ofone sensor
and the direction of a second one are known. In this study, we
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will assume that the locations ofthe two first sensors, indexed
by 1 and 2, are known. Thus, we set up a Cartesian coordi-
nate system on the array plane with the origin at sensor 1. The
coordinates of the location of sensor i relative to sensor 1 are
denoted by (xi, zi) and sensor 2 have the coordinates (X2, 0).
X2 is assumed to be less than half of the sources wavelength
A corresponding to w. The M -2 remaining elements can
form, if needed, an incomplete array i.e. distances between
two neighbor sensors may be greater than A/2.

We assume that the array shape corresponds to a distorted
version of a priori known nominal shape similar to a linear
antenna shape (see fig. 1). The coordinates corresponding to
the nominal sensor locations are denoted by (Xn, Zn).

Z

Distorted Arr

fl 0. Sensori

Nominal Array

Soufrej

Figure 1. Problem Geometry

To avoid any ambiguity problem during the sensors localiza-
tion, we only consider the case where, for each sensor, the
distance between its distorted position and its nominal one
does not exceed A/2.

Classically, we define the M-component vector aj to be the
complex array response for the jh source. A "snapshot"
y(t) = [yl(t),y2(t), . ,yM(t)]T taken by the sensors at
time t can then be described by the matrix equation

accounts for gain and phase sensor deviations:

aij = gij exp {ijij } -

We consider only phase deviations due to the sensor positions
(sensor gains are real) and consequently, the phase array re-
sponse of the ith sensor to a source j is

27 T
Pj= A Pifi (2)

where pi = [xi, ZiT is the position vector of the ith sensor.
Since the vectors nj are not collinear, note that matrix A is
necessary full column rank. Still note that, since P1 = [ 0]T,
we have ail = 1 for allj 1..., N.

The array shape self-calibration problem is to estimate sensor
locations pi for all i C [3, ... , M] from the identification
of the phases of the array response matrix A in an unknown
source field.

3. ARRAY RESPONSE MATRIX ESTIMATION
TECHNIQUES

There are number oftechniques available to identify the array
response matrix. We choose to mention three of them:

In [1], Weiss and Friedlander propose to estimate alterna-
tively the DOAs and the sensor locations until convergence
is achieved. As in every iterative method, an ad-hoc initial-
ization is necessary for sensor locations and for DOAs. The
nominal array geometry is used together to initialize sensor
locations and with MUSIC algorithm in order to provide ini-
tial DOAs. Note that MUSIC may have difficulties when in-
complete arrays are used. This method requires that all the
sensor gains gij are known.

With a Constant Modulus Algorithm [2], the same authors
show that, when isotropic sensors are used, a direct estimation
ofthe array response matrix is still possible avoiding thus any
problem of initialization. If gains gi (gains are no more de-
pendent on the DOAs) are unknown, their estimation is pos-
sible assuming that the sources sj (t) are uncorrelated. For a
given number of sources N, CMA needs at least N2 N + 1
sensors.

y(t) = As(t) + r(t), (1)

where s(t) = [si(t), s2(t), . . , SN (t)]T is the source vector,
A = [ai, a2, .. ., aN] represents the array response matrix
and rj(t) = [rji(t), Tj2 (t), ... , T1M (t)]Tis the additive noise
vector. The noise is assumed to have no statistical relation
with the sources, to be spatially incoherent and to have the
same power (72 on each sensor.

The (M x N) matrix A = [aij] is obviously unknown and

Assuming that the sources sj (t) are uncorrelated, the prob-
lem of the identification of the array response matrix can be
linked to a Blind Source Separation (BSS) problem. For ex-
ample, an algorithm such as AMUSE [3] can be used to es-
timate the matrix A if a sufficient number of snapshots y(t)
is available and if sources are assumed to have different spec-
tra. The main advantage of such BSS approaches is only N
sensors are sufficient to deal with N sources.

When practical applications are considered, the previous
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methods fail for two main reasons. First, the sensor are rarely
isotropic and even if their gain patterns are known, their spa-
tial directions being, by assumption, unknown, the gains gij
remains unknown too. Second, the number of snapshots is,
in practice, insufficient to consider the different sources to be
uncorrelated.

In this paper, we propose to adapt the Constant Modulus Al-
gorithm (CMA) for accurate calibration when distorted non-
isotropic sensor arrays are considered.

4. MODULUS COMPENSATION ALGORITHM
(MCA)

From equation (1), the sampled data model becomes y(tk)
As(tk) +r(tk), k = 1,2 ... Ns.

Let us introduce the (M x Ns) output matrix Y = [Yik]
with Yik = yi(tk), the (N x Ns) source matrix S = [sjkl
(sjk = sj(tk)) and the (M x Ns) noise matrix N = [qik]
(7qik = r]i(tk)). These three matrices together with matrix A
obey the following equation

Y=AS+N. (3)

The number of samples Ns is supposed to be large enough to
ensure that the (N x N) matrix SSH is regular. Moreover,
we assume that

1 J1NNH is close to Cov{rj}, say J2IMN,

2. N SNH is close to E{SNH}, the null matrix (0NMN,

Consequently, in the sequel, we will consider that

. NNH#Ns(72IM

. SNH#(ONM

Now, from (3) we have then

yyH = ASSHAH + Ns5o2IM. (4)

We can then write the following eigenvalue decomposition

yyH = U [ As UH + NSO72UUH. (5)

As + Nsou2IN is the diagonal matrix containing the N largest
eigenvalues ofyyH. The first N columns ofU correspond
to the relevant unit-norm eigenvectors. The M -N remain-
ing vectors form an orthonormal basis for the (M -N)-
dimensional orthogonal subspace.
Considering the expressions (4) and (5), A takes necessary
the form

A = UsW, (6)

where Us contains the first N columns ofU and whereW is
an unknown N x N matrix we have now to find in order to

estimate A.

An entry aij of A can be written aij = uHwj, where u H

is the jth row of Us and wj is the jth column of W. Any
column vector wj must satisfy the equation

H H 2; ,Wi UiUi Wi gij vt,J. (7)

Now, remember that we deal with an antenna whose shape
corresponds to a distorted version of a linear one. Let us as-
sume that the sensors have almost the same gain patterns and
had initially (for the nominal shape) close directions. When
the antenna is distorted, it is reasonable to think that, two
neighbor sensors keep almost the same gain.

Ideally, assume that the array is composed of K couples of
sensors (ki, 1i) such as, for all i = 1, . . ., K, we have

Vj) gkij glij - (8)

This will be, for example, the case in practice, when the sen-
sors of a same subarray are mounted on a rigid mechanical
structure. Note that two couples of sensors must be indepen-
dent (i. e. they must not share a same sensor). These different
sensor couples are called subarrays.

From the different rows of U, we can form the K matrices
A-ukiUkiU - uluf, i = 1, ... , K. Now, considering

the equations (7) and (8) one has

wjHQWj = 0 Vli, j. (9)

Let us introduce the vec. } operator that vectorizes a matrix
by stacking its columns. There is a useful relationship be-
tween the Kronecker product 0 and the vec{.} operator:

vec{ABC} = (CT X A)vec{B}.

Thus, vectorization of (9) yields

(w X w )vec{Qi} = vecT{Qi}(wj 8w) 0 Vi,j.

Using a matrix notation, this set of equations amounts to

Q(wj w *) =O Vj, (10)

where the jth row of the K x N2 matrix Q is vecT{Qi}.
Any column vector w, in W, is such that (w 0 w*) is in the
null space ofQ denoted by JVf{Q}.
Now, we can exhibit the following sufficient condition for A
to be unique:

Proposition 1: A full column rank matrix A satisfying the
equation (6) under constraint (10) is unique up to a permuta-
tion and a scaling factor over its columns ifdimJf{Q} = N.
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Proof: Since the matrix A is full column rank and ac-
cording to equation (6), the vectors wj w*, j {1,. .., N}
are linearly independent and thus form a basis of a N-
dimensional subspace. If, by assumption, dimJVf{Q} = N
then, according to (10), this subspace is necessary JVf{Q}.
Let us now establish that this basis {wj wwj}, j C
{l,...,N}isunique.

In the subspace JVf{Q}, any vector in the form v 0 v* can be
written as:

N

v(9v =E NWj 9Wj*.
J=1

We can equivalently rearrange the previous vector decom-
position in terms of rank-I matrix decomposition using the
vec- 1.} operator:

N

vec v1 v } Vv_= W*WT
j=1

Since all the matrices involved are rank-I matrices, it is
straightforward that coefficients aj have to be all zero except
for one: any vector structured as v v* JVf{Q} is collinear
to one of the vectors wi X w*. We can then assert thatW
(and consequently A) is unique except for one permutation
and a scaling factor over its columns.

.

In the sequel, we assume that dimJVf{Q} = N. Validity of
this assumption needs a sufficient spatial diversity; this point
will not be discussed here. Having said that, a necessary con-
dition is that matrix Q contains N2 -N independent rows. In
other words, the array must be composed of, at least (N2 -N)
independent sensor couples i.e. 2(N2 -N) sensors.

Given {b, ... , bN} an arbitrary basis of JVf{Q}, one can
express each vector bk as,

N

bk Z kwj w9w*, Vk e {1, 2, ..., N}.
j=1

Performing the inverse vec operation on previous equation we
get

N

vec-1{bk} Z kW*WT = W T,Vk C {1,...,N},
j=1

where Sk = diag{ak,... , a}.

The problem of the identification ofW merge then with the
diagonalization of R1 1R2 where R1 and R2 are two ma-
trices among the set of matrices Rk A vec-1{bk} k =

1, . .. , N.
The eigenvectors matrix of R1 1R2 straightforward corre-
sponds to the inverse ofthe transposedmatrixW we are look-
ing for, except for an unknown permutation and an unknow
complex scaling factor over its columns.

To replace W by such a matrix in equation (6) conducts to
an estimation A of the array response matrix A. Each col-
umn vector in A have to be divided with its first component
in order to eliminate the unknown scaling factors and to en-
sure that a6i= 1 for all j.
Note that, in presence of noise, more robust methods based
on joint-diagonalization of the whole matrices Rk, k
1,.. , N are preferable (see [5], [6] for deta ils).

5. SENSOR LOCALIZATION PROCEDURE
In this section, we assume that an estimation A of the array
response matrix A was provided by the MCA algorithm.

DOA Estimation

Since the positions ofthe two first sensors are the only known,
DOAs can be estimated using these sensors only. In A,
the quantity Ziaij correspond to an estimation of the relative
phase for the source j between the sensor i and the reference
sensor 1. Recall that the argument of a complex number is
always given in the interval [-7, 7] and generally, we have
according to (2)

Z6,ij - ij mod [27]
27r T

nj Pi mod [2r]

The distance between the sensors 1 and 2 being, by assump-
tion lower than A/2, the phases 52j are necessary in the inter-
val [-7, 7] and we have

Za2j = P2j = nTP2 Vj.

With nj
using

[sin Oj, cos Oj] T, the DOAs Oj are then estimated

6j = asin
A -Z6,2j Vj
2w ~P2~~ (1 1)

Sensor Position Estimation

To avoid any problem of missing rotations in the estimation
of the phases /ij it is convenient to use the notion of array
nominal shape.
Given the nominal position vectors pi and the estimatedA~~~~~~~~~~~~~~~~
DOAs Oj, we can compute the array response matrix A' for
the nominal array. We can still compute a matrix A' whose
entries are obtained dividing each entry in A with its corre-
sponding entry in A'. Arguments Za6' ofthe elements of A'
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represent the relative phases between actual and nominal sen-
sor locations. Now, ifwe assume that the nominal sensor lo-
cations and the corresponding actual locations are lower than
A/2, then these relative phases are necessary in the interval
[-7, 7] and can be straightforward estimated from the angles
of A'.

Introducing p'-̀ ip,, i = 1, ..., M, the relative sen-
sor locations, we have then the following relations 180

ii -,nA p' Vi,j.

An estimation of p' in the least square sense can then be ob-
tained using

0 (1)

Figure 2. Sensor Gain Pattern

/ A
Pi =-2

fnT - t Z6'ii

. . ,j ~~= 1, ... ,M,

iTN Z6a'
]tNJ N

where nj = [sin 0j, cos 0j]T, j = 1, ... .,N is the esti-
mated wavefront normal vectors and where the upperscript
t denotes the Moore-Penrose pseudoinverse.

6. NUMERICAL EXAMPLES

In this section, we present the results of three antenna con-

figurations that demonstrate the performance of the proposed
method. In all experiments, the sensors used have all the same
real gain pattern G(0)

f G(0)
l G(0)

nHnw, if 0 e [-7/2, 7/2],
-0, otherwise.

ns is a unit-norm vector giving the direction of the sensor

and where nw is a unit-norm vector giving the direction of
the wave (see fig. 2).

In all the simulations, we consider 3 narrowband equal-power
source signals generating a wave of A = 30cm located in the
far field of the array at directions 01 =-360, 02 -30 and
03= 200.
These 3 sources are differently colored and impinge upon a

18-element incomplete arrays whose the two first elements
are 0.8A/2 apart.
The recordings are corrupted by spatially incoherent Gaus-
sian white noises.
These three antennas correspond to distorted versions of a lin-
ear ones; all are about 4m long. When the array is distorted,
the terminal sensor is subjected to a 90 percent of A/2 shift.
The notion of subarrays, appropriate when MCA is used,
fully appears in the two last antenna configurations.

Simulations use N5 = 10000 samples and the sensor noise is
injected with an SNR of 30dB on each sensor. 30 indepen-
dent simulation runs are used to compare the self-calibration
results obtained with MCA, CMA and AMUSE algorithms.

Antenna Configuration 1

When at rest (nominal shape), this first antenna form, starting
from the third sensor, a regular incomplete array whose sen-

sors are 0.8A apart (see fig. 3). Here, MCA is applied consid-
ering that the 9 sensor couples (2p -1, 2p), p 1,... , 9
form as many subarrays.

5
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0.5 1 1.5 2
x (m)

2.5 3 3.5 4

Antenna Configuration 2

This second antenna have the same dimension than the pre-
vious one but the sensors have been brought closer in order
to form 1.6A apart couples (subarrays). Inside a subarray,
the two sensors are 0.8A/2 apart (see fig. 5). Direction of
each sensor depends on the curvature of the array and con-
sequently, even inside a subarray, the sensors don't focus to-
ward the same direction.

1.5

0.5k

Figure 3. Antenna 1

Fig. 4 depicts terminal sensor location estimations obtained
with MCA and CMA. One can see thatMCA have a lower av-
erage location error (bias) than CMA. Unfortunately, it have
to trade standard deviation off against bias.

0 0.5 1 1.5 2
x (m)

2.5 3 3.5 4

Actual Location

I-0 **0 * * MCA Estimation

Figure 5. Antenna 2

As previsously, fig. 6 presents terminal sensor location esti-
mations obtained with MCA and CMA. Applying MCA with
this subarray-based antenna conducts to a very lower average
sensor location error (compared with CMA) but always an
higher standard deviation.

0.22

CMA Estimation

0.2

4.075 4.08 4.085 4.09 4.095 4.1
x (m)

4.105 4.11 4.115 4.12

0.18

Figure 4. Terminal Sensor Localization
E 0. 16
N

0.14

The following tabular exposes, always for the localization of
the last sensor, the performances of the different algorithms.
AMUSE bad performances are due solely to the fact that the
number of samples is insufficient to consider the different
sources to be uncorrelated.

0.12

4.04 4.06 4.08 4.1
x (m)

4.12 4.14 4.

Bias (mm) STD (mm)
x z x z

MCA 2.9 -0.1 3.7 1.1
CMA 31.3 -25.5 1.2 0.4
AMUSE -25.4 -32.2 85.6 45.5

Figure 6. Terminal Sensor Localization

We resume in the following tabular the performances of the
different algorithms for the localization of the last sensor.
Note that AMUSE provide quite the same results than in
the previous configuration antenna. The performances of
AMUSE depend only on the sample number.
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A Distorted Array
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Table 1. Antenna 1 Results
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Bias (mm) STD (mm)
x z x z

MCA 4.8 -2.3 8.8 2.1
CMA 54.2 -22.3 1.3 0.4
AMUSE -25.2 -33.1 85.3 42.5

Table 2. Antenna 2 Results

Antenna Configuration 3

This last antenna is composed with the same subarrays as in
the antenna configuration 2 but inside a subarray, the two
sensors have exactly the same direction (undeformable sub-
arrays).

Once again fig. 7 and table 3 show terminal sensor location
estimations obtained with MCA and CMA. Once again we
observe the same performance exchange between bias and
variance.

0.2

0.18

0.14

0.12

4.04 4.06 4.08 4.1
x (m)

4.12 4.14

Figure 7. Terminal Sensor Localization

Bias (mm) STD (mm)
x z x z

MCA -1.9 0.1 8.8 2.1
CMA 54.6 -24.4 1.3 0.4
AMUSE -26.2 -33.2 82.6 41.5

The main disadvantage is that compared to CMA in with an
isotropic-sensor based antenna, the number of sources we are
able to deal with, is lower.
Examples of antenna configurations appropriate for our
method have been successfully tested out.
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7. CONCLUDING REMARKS
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