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Abstract This paper presents a method dealing with the self-
calibration problem in term of array shape for large flexible
antenna. This implies to take into account the phenomena of
distortion and vibration that this kind of antenna, like an array
mounted under flexible wing, can suffer from. We propose a
technique that eliminates, on the first part, the phase ambigu-
ities due to the large static bending, and on the second part,
that estimates an instantaneous array shape. This two-step
method allows us to follow the antenna during its dynamic
fluctuations due to vibrating modes. We present simulation
results in case oftwo particular large flexible antennas.

Keywords Target detection, adaptive tests, sequential detec-
tion.
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1. INTRODUCTION

Direction finding of emitting sources using sensor array re-
quires the knowledge of sensor locations. An high angular
accuracy needs the use of large-size sensor arrays. Techni-
cally, such antennas are often integrated to structures exposed
to significant unknown distortions.
Using unknown impinging signal sources (for example TV
or radio emissions...), allows one to estimate the sensor loca-
tions. In the past, Rockah and Schultheiss [1] are one of the
first to assess the validity of self-calibration principle. They
have shown that three sources are necessary for calibrate the
array providing we know the exact position of one sensor and
the direction of an other one relatively to the first one. Later
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on, Weiss and Friedlander presented a self-calibration tech-
nique based on maximum likelihood theory [2]. This iterative
method juggle between two steps of parameters estimation:
DOA and coordinates. As all iterative algorithms, we need an
initialization processing, here we use the MUSIC algorithm
using the initial known sensor positions. Then, Weiss and
Friedlander and others authors, develop direct methods [3].
All parameters are estimated at the same time. Flanagan and
Bell suggest a method for high static distortion magnitude
[4]. All these methods give good results providing the sensor
deformations are small, and more precisely, smaller than the
wavelength. The classical self-calibration methods succeed
provided that first, the antenna is subject to static deforma-
tion only and second, this remains close to an a priori known
nominal shape.

This paper presents a method dealing with array-shape self-
calibration in large dynamic deformation cases encountered
in airborne antennas where sensors are mounted under flex-
ible wings. In this case the shape of the antenna is the su-
perposition of a large static bending (compared to the at rest
shape) and low magnitude dynamic fluctuations due to vibrat-
ing modes. Such antennas reach up more than 10 meters in
length and the maximum deformation can exceed Im at the
wing tip. On the other hand, we can assume that deforma-
tions near the fuselage are negligible. Generally, only the
very low frequency vibration modes (around 10Hz) are sig-
nificant, whose magnitudes are roughly 10% ofthe maximum
static deformation in steady flight.

The sensors are assumed omnidirectional. This paper is or-
ganized as follows: in section 2, we specify the problem and
the data model encountered in such antennas.
Then, in section 3, we detail the Constant Modulus Approach
(CMA) [3], we use in a simplified case of data model (the free
noise case) and we detail also an original technique in order
to eliminate the phase ambiguities due to the static bending.

The central part of the paper is the section 4, where we detail
the two steps method proposed for self-calibration in pres-
ence of noise. The aim of the first initialization step is to
counteract the phase ambiguities by crosschecking several
estimations provided by different subsets of source signals.
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This step being unfortunately noise sensitive, a significant ob-
servation time is necessary. We obtain only a coarse shape
close to the static one. The second step is used to obtain the
instantaneous array shape from the estimated static one. The
problem reduces here to a classical self-calibration problem.
The two steps are based on the Constant Modulus Approach.

Considering baseband signal, an output can be expressed at
each time as a complex linear combination of the N demod-
ulated sources. Denoting s(t) = [si(t), . . ., sN(t)]' the vec-
tor of the N baseband sources, the signal at the output of
the sensors can be described by the M-dimensional vector
y (t) = [Y I (t) ,.. , YN (t)] T:

y(t) = A(t)s(t) + n(t),
Finally, the algorithm is tested on simulated data in the two-
dimensional case, and its performance are compared to the
Cramer Rao Bounds.

2. PROBLEM FORMULATION AND DATA MODEL
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where rj(t) is the noise vector and A(t), the array response
matrix. The columns of the matrix A(t) are the steering vec-
tors of each source.
We assume that we use omnidirectional identical sensors: the
power of the contribution of a source signal on a sensor is the
same for any sensor and any orientation of sensor. It will be
taken equal to g, an unknown constant.
Under these assumptions, an entry aij (t) of the previous ma-
trix can be expressed only from the current sensor i location
and the DOA nj as

(2)
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Figure 1. Antenna Geometry.

Our aim is to estimate the positions of M sensors of a dy-
namically bended antenna from N (M > N) narrowband ra-
diating sources. In this study we assume that the antenna and
sources are coplanar. The current position vector of the jth
sensor is then denoted pi(t) = [X,(t), z,(t)]T. The positions
of the first two sensors are known and the distance between
them is lower or equal than halfthe wavelength A correspond-
ing to the carrier frequency of all the sources. The origin of
the plane space is given by the position of the first sensor,
and the position of the second sensor defines the direction of
x-axis (see fig. 1). Moreover, nominal sensor locations (for
example corresponding to the antenna at rest) are known.
The inter-sensor distance except the distance between the two
first sensors can be greater than A/2. The same way, the dis-
tance between the current location and at rest location of a
sensor can be greater than A/2. This justifies the expression
"large antennas" and "large deformations".

The Direction Of Arrival of each source is the same for all
sensors (far field assumption) and differs from one source
to another. With the axis system described in fig.1, the
DOA of the jth source is given by the unit vector nj =

[sin(Oj), cos(Oj)]T . All sources are in the same half-plane:
-7/2 < Oj < 7/2 for all j C1, . . ., N}. We assume there
is no signal reflection (singlepath propagation assumption).

The array shape self-calibration problem is to estimate, at
x time t, the sensor locations pi(t) for all i C [3, .... M] from

identification of the phase of the array response matrix A(t).

3. ARRAY SELF-CALIBRATION IN THE FREE
NOISE CASE: A DIRECT METHOD FOR

LARGE DEFORMATIONS

Array Response Matrix identification

The following derivations are strongly inspired by the Con-
stant Modulus Algorithm developed by Weiss and Friedlan-
der, see [3].

From equation (1), the sampled data model in the free noise
case becomes y(tk) = A(tk)s(tk), k =1, 2, ... , NS.

Time Independence Assumption: We assume that the sam-
pling frequency is chosen sufficiently high and the sam-
ple number NS sufficiently small such that the matrices
A(tk) are locally time independent, so equal to a matrix
Aforthetimestk, k =1,.. ,Ns.

For example ifwe consider Ns = 6 (that is a sufficient num-
ber ofsamples in a free noise case and for a number of sources
N < 6), a sampling frequency = 60 kHz, and a mechanical
vibration frequency = 1OHz, the observation duration will be
equal to 0.05 % of the mechanical vibration period.

Introducing the output matrix [Yik] [yi(k)], (i
1, ..., M), (k = 1, . . ., Ns) andthe (NxNs) sourcematrix
[Sjkl = [sj (k)]) the data model becomes

Y =AS (3)
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Provided that the number of samples is greater than the num-
ber of sources (N5 > N), and that the sources are non-
correlated, S is full rank.
From (3) we have:

yyH = ASSHAH.
Consider the Eigenvalue Decomposition of the matrix

yyH = UAUH

where A is the diagonal matrix ofthe N non-null eigenvalues
of yyH, and U is the M x N matrix of relevant eigenvec-
tors.
Considering the two previous expressions for the matrix
yyH, A takes the form

A = UW. (4)

The problem is now reduced to the estimation of the matrix
W.

An entry aij ofA can be written aij = uwHwj, where uH is
the jth row ofU and wj is the jth column ofW. Each entry
of aij having the same modulus, we can write

WHulitH wj g Vi, j (5)

From the different rows of U we form the M -1 matrices
Ki = uj±i+ju 1uHuH i 1,.. .,M 1. Considering
the equation (5) we get

WHKiwj = 0 Vi,j (6)

Using the property vec(ABC) = (CT 0 A)vec(B), vector-
izing the previous equation yields

(WT Xw)vec(Ki) vecT(Ki) (wj wj*) =0 Vi,j

This set of equation amounts to

K(wj X w*) = 0 Vj

where the jth row ofK is given by vecT(Ki).
The N vectors (wj ww*) are in the kernel of K whose di-
mension is ((M -1) x N2).

A necessary condition for the kernel ofK to be spanned by
the N vectors (wj ww*) is that the rank of K is equal to
N2 N. Thus, we need at least N2 N linearly independent
vectors vecT(Ki) that means we need at least N2 - N + 1
sensors.
Given {b1, ... , bN} a basis of the kernel of K, one can ex-
press each basis vector as

N

bk= Zaj(wj Xw*) Vkef{1,2, ..., N}.
j=1

Performing the vec-1 operator on previous equation we get

N

vec 1(bk) = ZEaj(w;wf ) =W SkW k C{ ..., N}
j=l

where Ek = d lag{oa,, a2 ...* *,AN}-

The problem of the identification of W can merge with di-
agonalization of R- 1R2 where R1 and R2 are two matrices
among the set of matrices Rk= vec- 1 (bk) k= 1,.... N.

R11R2 = W-T WT (7)

where E = E1 E2 is diagonal.
Except for a permutation and a complex factor, the matrix
of eigen vectors of R1 1R2 is the inverse of the tranposed
matrixWwe are looking for. ReplacingW by such a matrix
in equation (4), and normalizing each column of the matrix
result obtained by the first term of each column we obtain the
estimated matrix A, with alj = lVj and aij = exp(j275ij).

Note that in presence ofnoise, more robust methods based on
joint diagonalization of all matrices will be chosen.

Sensor localization - Phase ambiguity elimination

We consider /ij the relative phase for the source j between
the sensor i and the reference sensor 1. It is given in [-7, 7]
and it is proportional to the projection of the position vector
of sensor i on the DOA unit vector j modulo 27 (see equation
(2)):

2w T
4i$j-P nj mod [27]

Let us recall that the norm of sensor 2 position vector
is known and lower than A/2. Moreover the reference
axes are chosen such as P2 = P2 ,0]T and nj
[sin(Fjr),Ct eosj )]T.
From the previous equation the DOAs are computed as

Oj = asin ( 2i2A\2wp I~2~ (8)

Given the at rest position vectors p', the unknowns become
the difference vector between the at rest and the actual vector

P Pi-p i>2. (9)

We introduce the relative phase between actual and at rest
sensor t:

' Tnj mod [27]
This relative phase is deduced from the measured phase /i
by

/ ) 2w[ VT i 2,
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covariance matrix is scalar E [r,(t)r,H (t)]
denotes the expectation operator.

For a sensor i, the relative position vector is obtained from a

number of sources greater or equal than the space dimension
of the problem:

Tl [ 'i + ki27w
A

1 i

Lw J L~I N + kiN27 j

(10)

T'2IM where E[ . ]

In a first approach, A is supposed to be independent of time.
The identification of constant array response matrix A is sim-
ilar than in the free noise case except that we have to introduce
second order statistics hoping to minimize the noise effects.
The covariance matrix of the output signals is

E[y(t)yH (t)] AE[s(t)sH(t)]AH + T12IM (12)
UAUH

where the superscript 0 denotes the Moore-Penrose pseudo-
inverse and ki = [ki, ... kiN]T, is the vector collecting the
different numbers of phase rotations of each sources for the
given sensor i. Each value of the vector ki provides a differ-
ent solution, so the result is written parametrized by ki

In the 2D-space, two sources are sufficient to obtain the dif-
ferent relative position vectors.
We propose here an empirical method, validated with test re-

sults in section 5, to find the unique solution (in most cases)
in two steps:

. Step 1: considering a coarse model of array structure de-
formation, we can reduce the number ofphase rotations from
kij C Z to an eligible one. For example in case of an-

tenna mounted on wing structure we assume that the maxi-
mum deformation does not exceed few wavelengths: kij C
{-Nr, ... , Nr}, for all i, j. This model can be refined, for
example, by considering that the array deformation can only
be positive i.e. kij {Nr ... Nr/p (ki) > O} ...

Step 2: consider C1 =(source u1, source vi) a couple of
sources (ua :t v1 are taken in 1,2... ,N}). C1 gives a family
of eligible solutions that is to say the solutions of eq.(2 1) veri-
fying the step 1. Let us denote {p'(ki) this family. Another
couple C2 provides a different family of solutions {p'(ki)}2.
The actual relative vector position p' belongs to each solution
family. From N sources, we build N -1 different couples of
sources. From a sufficient number of couples, the intersec-
tion of family of solutions conducts to an single element the
actual position:

N-1

Pi= n {p$(ki)}1
1=1

(1 1)

In practice, in the 2D-space, 3 sources are almost always suf-
ficient to identify the actual relative vector position (we met
some pathologic cases where this empirical method fails).

4. SELF-CALIBRATION IN PRESENCE OF NOISE
Limitation ofthe Direct Method

Consider the initial continuous data model described in equa-

tion (1). The noise is assumed to be spatially white and
equally powered on sensors and as a consequence the noise

where E [s(t)sH (t)] is the covariance matrix ofthe source sig-
nals, A and U are eigenvalue and eigenvector matrices of co-

variance matrice of the outputs.
As it is shown by Weiss et al. in [3] we have:

AE[s(t)s (t)]A =UN [A '1 IN] UN: (13)

where UN is the M x N eigenvector matrix restricted to the
N greatest eigenvalues of E[y(t)yT (t)].
A can be decomposed again like equation (4):

A = UNW, (14)

and its estimated is proceed using the Constant Modulus Ap-
proach described in the previous Section 3.

Now consider the case where A depends on time. y(t) is no
longer stationary, and the ergodism property classically used
to estimate covariance matrix from only one experiment has
to be carefully used. We must distinguish two time scales.
First, when the duration of the experiment is short, the as-

sumption of time independence for matrix A remains valid
but the estimate covariance matrix of the noise is not a scalar
matrix. Due to the consecutive estimation errors on the en-

tries of A, the research of phase rotation number in case of
large deformation totally fails even for small errors.

Second, if the duration of the experiment is long, the covari-
ance matrix of noise is accurately estimated, but A can no

more be considered as a constant matrix.
Nevertheless, refining the data model with of an array defor-
mation model, the non stationary problem can be split as two
successive time-independent ones.

A Data Model adapted to Vibrating Antennas

For applications and observation durations we deal with, the
deformation of the antenna is considered as the superposition
of a large static bending (compared to the nominal shape) and
low magnitude dynamic fluctuations due to vibrating modes
as shown in fig.2. The position vector of sensor i is then
parted into

Pi(t) p i + Pi(t),

where Pi= [xi, zi]T, is the static position vector,
and pi(t) [;i(t), zi(t)]lTis the dynamic position vector. It

is time-dependent and its temporal average is null.

4
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Figure 2. Array Shape Dynamic Model.

Replacing the position vector by its decomposition in expres-
sion (2), the entries of matrix A(t) become

aij(t) = exp j Pinj exp{i - Pit)niy

A Two Time Scales Methodfor Self-Calibration in presence
ofNoise

Introduction The process is split in two steps.
The aim of the first step is to counteract the phase ambigui-
ties by crosschecking several estimations provided by differ-
ent subsets of source signals. This step being unfortunately
white gaussian noise sensitive, a significant observation time
is necessary (long time scale signal analysis). We only obtain
a coarse shape close to the static one.
In the second step, the previous observation time is parti-
tioned in small time intervals, each of them is used to obtain
the almost instantaneous array shape from the estimated static
one (short time scale signal analysis).
Note that the estimation of some static unknowns like the
DOAs can be refined during the short time scale analysis.

First Step: estimation ofthe static array Assuming that the
signal vectors s(t) and the noise vector rj(t), are realizations
of stationary, zero means random process and there is no cor-
relation between the noise and the signal, from equation (17)
the records covariance matrix is

Fyy(t, t)
or in matrix notation

A(t) = AoA(t), (15)

where o represents the Hadamard (element-wise) matrix mul-
tiplication.
Assuming that the dynamical distortions have low magnitude,
the entries ofdynamical array response matrix can be approx-
imated as first order Taylor-series expansion:

aij(t) 1 I+jfPf(t)nj,

fij (t)

or in matrix notation

A(t) I + F(t),

where

It is the M x N ones matrix such that It 1 Vi, j
F (t) only account for first-order time dependent terms.

Hence

A(t) = A + D(t), (16)

where D(t) = A o F(t) is a deviation matrix depending of
time.

Replacing A(t) by its expression (16), eq.(1) becomes

y(t) = [A + D(t)] s(t) + r(t). (17)

which is the new data model adapted for vibrating antennas.

E [y(t)yH(t)]
=[A + D(t)] Rss [A + D(t)] + 'jIM
ARSSAH + ARSSDH(t) + D(t)RSSAH

+D(t)RssDH(t) + T12JIM (18)

whereRss is the source signal covariance matrix and r1I is the
noise covariance matrix.
Applying the temporal averaging operator

T

2[] T-oTc J T

to the record covariance matrix, we can define a "stationar-
ized covariance matrix" of the vector signal y

Ryy = m [Fyy(tXt)] .

Because the dynamic deformation is temporally zero-mean,
i.e. m [D(t)] 0, averaging the equation (18) yields

Ryy = ARSSAH + m [D(t)RssDH(t)] + r1

= ARSSAH + m [A o F(t)RssFT(t) oAH]+AjIM.
order 0 2nd order matrix

(19)

Due to the temporal averaging, the order one terms of eq.(18)
vanish in eq.(19). It remains only order 0 and order 2 terms
in the power series development ofRyy These 2 order terms
will be neglected in the estimation of A and the algorithms
we use conduct to an estimated A such that

Ryy = ARSSAT + 'jIM.

similar to previous equation (12).
Once again the matrix A takes the form of equation (4)

A = UNW,

5
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where UN is now the matrix of eigenvectors corresponding
to the N greatest eigenvalues of Ryy
The matrix A is estimated using CMA as described in Sec-
tion 3 from eq.(4) to eq.(7).
Following, we compute the DOA Oi, i = 1, . . . , N from equa-
tion (8).
We choose at least two distinct couple of sources from the
N sources: C1 = (ul,vi) C {1,2,...,N}2 U1 Vl,
C2 = (u2,V2) C {1,2,..., N}2u22 v2 and with C1 7C2.
The estimation of eligible static relative position vector is
then performed using equation (21):

{Pi(k l A2[ nv 1
v +kv27w ]

{Pi(ki)12-
A

nU2Q OiUtt2 + kul 27r

We introduce ij(t) the phase deducted from the entry of
A(t)

$ij (t) + kij 2 7r= pi (t)n=,

and ij (t) the phase deducted from the entry of A(t) of step
1

- ~~27r T
4)ij + kij27r -,-pi nj .

Because the number of phase rotations kij is the same in the
two previous equations, the relative phase IfpiT(t)nj is de-
duced without ambiguities from the measured phase ij(t)
by

2w tA-yp[(t)nj q$i(t oi i > 2,

hence

where the i (jU 1, V1,VU2, V2) are the phases extracted
from the array reponse matrix A.

The unique solution is then deducted by cross-checking the
different families solutions {Pi(ki)}1 and {Pi(ki)}2 as in
equation (1 1)

Pi = {Pi(ki),}1 n {Pi(ki)}2

A -

2w q5ij), i > 2.

For a sensor i, the dynamic position vector is obtained from a
number of sources greater or equal than the space dimension
of the problem:

T\[n][ l(t)+ -Tn]

p(N )iN(t) + pi

(21)

Second step: Estimation of Dynamic Array Shape In the
previous calculus, we have neglected the second order terms
in equation (19). Of course they are not negligible and, as a
consequence, the static sensor locations we obtain are biased.
However in this case, the relative deformation between the
biased estimated static array and the actual one is small i.e.
always lower than half a wavelength.
The very noise-sensitive stage relative to the research ofphase
rotation number in no more necessary. In this case we chose
to estimate the covariance matrix ofthe outputs on a small du-
ration experiment Td considering the moving of the antenna
is negligible. The temporal averaging is no more necessary
and

Fyy(t) A(t)RssAH(t) + T12JIM,

where yy (t) is the covariance matrix of the outputs esti-
mated on the short time interval [t, t + Td] and A(t) is the
array response matrix associated to the array shape during the
same time interval. Practically we will choose Td less than
IO% of the period of the most significant vibrating mode.
The matrix A(t) is obtain performing a CMA on ryy (t) (see
developments from eq.(4) to eq.(7)).

Now, the nominal known positions are the static position vec-
tors Pi estimated in the step 1, and the unknowns are the dy-
namic position vectors Pi (t).

P(t)Pi (t)- p i > 2. (20)

Finally, Pi and Pi (t) being known, the current position vector
Pi (t) is known for any sensor i and any time.

Note that during the evaluation of dynamic results, we can
refine the static values ofDOAs or static position vectors.

5. SIMULATION

Simulation 1

Background We consider three sources at the same wave-
length A = 30cm that are impinging on an irregular and
incomplete array of omnidirectionnal sensors. The array is
composed ofM = 8 sensors. At rest, the coordinates xi, zi
of the sensor i are given by

A
[xi] = [0 1 2 6 13 20 21 23]1-2' i = 1,...,8,

The DOAs of the N = 3 sources are 01 = -360, 02 =

30, 03 = 200. The noise sensor is injected with a Signal to
Noise Ratio of 15 dB.
The number of snapshots used during the first step (static
shape estimation), is Ns = 6000. We divide the observa-
tion time Ns in 60 blocks of 100 snapshots. The number of
samples considers in the second step (dynamic shape estima-
tion) is then Nd = 100.
The distortion follows a polynomial of degree 4. The magni-
tude of the distortion at the tip ofthe antenna is around 1.3A .
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So 3 sensors, 6, 7 and 8, have an ambiguous location.
Besides the static bending, we add a vibrating mode. The
oscillation's frequency is fd = 10Hz. The maximum magni-
tude is reached at the last sensor. The sampling frequency
fe = 60KHz, allows us to observe the oscillation phe-
nomenom during one period. The figure 3 details the array,
with the positions of sensors at rest, and suffering from static
plus dynamic distortions. The DOA's of the three sources are
schematically represented too.

Antenna at rst and distoedacdyr i.)
DOAs of 3 sources

1.5

,1 ~~~vibrations due to dynamic phenoon

\ Jstaicblendng1

Z axis in
wavel6ng 1t

The following Figure 5 illustrates the position of sensors 6,7
and 8 for the third samples block. The results are plotted
together with the ellipses of confidence. These ellipses are
computed from the Cramer Rao bound [2].

Estimation of the 3 last sensors at the third instant of the vibratory phenomenom
100 runs - ellipses of confidence -BCR

x 100 estimations
13 - o real position x x

0 ellipse of confidence
x

1.2-

1.1

wavelengt
0.9 _

08

07

0.6

-

*, I

s /
s rtsors at est

9 95 10 105 11
x-axis in wavelength

115 12

Figure 5. Ellipse of confidence and results
source 1

4 6
x axis in wavelength

Figure 3. Array Shape Static and Dynamic Model.

Results In the aim to expose the validity ofthe algorithm we
have done 100 runs. The figure 4 represents the positions of
the sensors obtained at the step 1. The marges ofthe vibration
of the antenna are represented in solid line. We constat that
the static estimation are biaised that confirm that the second
order term is not negligeable in 19. We remember that,here,
the goal is to eliminate the ambiguity ofthe three last sensors.
We can check on this figure that for 100 runs, the array shape
is approximatively estimated without ambiguity.

1.4-
Estimation of an approximation of the static bending
Vibrations of the antenna during the proc

12 - 100runs

08

z-axis in
wavel8r ith

04

02

-02l
0 2 4 6 8 10 12

x-axis in wavelength

Figure 4. Positions obtained for 100 runs at the end of Step
1.

Second simulation

We present here a tracking result obtained in a less noisy con-
text: SNR = 3udB. The DOAs and the carrier frequency
A are the same as previous simulation. The maximum static
deformation is 4(A/2). The dynamic one is about 10 percent
A/2. The antenna is composed of 7 sensors whose geometries
at rest and statically deformed are illustrated in fig.6. The
number of samples used for the static deformation estimation
is NS 10000 and the dynamic deformation is computed on
25 block of 400 samples. During this step, DOA estimations
are refined taking into account the previous DOA estimations.

E 0
N~

0 1 2 3 4 5

x (m)

8 9

Figure 6. Antenna at Rest and Deformed Antenna.

The fig.7 is an illustration oftracking on the sensor 7 position.
Starting from the estimated static position, we observe that
the DOA refinement during the process improve the result.

7

DOA
1

-1
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Figure 7. Tracking of Sensor 7 position

6. CONCLUSIONS

We presented a two-step method, based on Constant Mod-
ulus Algorithm, which succeeds in array shape self calibra-
tion. Ultimately, we have counteract the ambiguity level due
to large bending. Furthermore, the tracking of the antenna
during the vibrations has been achieved. To our knowledge,
these two particular aspects has not already been land. More-
over, the first simulation results obtained confirm the validity
of our approach.
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