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A method is presented for dealing with the array

self-calibration problem with persistent and noncooperating

narrowband sources such as TV, GSM, and radio emissions. We

consider large and flexible antennas whose sensors are subject

to important static distortions and dynamical vibrations. Such

antennas can be found, for example, when a high-resolution

array is inserted along the wings of an aircraft. We propose a

self-calibration technique that solves phase ambiguities arising

from the large static bending and estimates the current array

shape. This two-step method can be used with a single carrier

frequency or with multiband sensors. The performance of the

method is evaluated with simulated data and is compared to the

Cramér-Rao lower bound (CRLB).
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I. INTRODUCTION

Several authors have studied the influence of array
shape calibration errors on the direction of arrival
(DOA) estimation problem (see, e.g., [1, 2]). They
showed that direction finding with sensor arrays
requires the knowledge of sensor locations. High
angular accuracy demands large sensor arrays. In
practice, such antennas are integrated into structures
exposed to significant unknown distortions and
vibrations.
The sensor array calibration using multiple beacon

signals, disjoint in time or in frequency, has been
studied in numerous papers (see, e.g., [3—6]). When
such sources are not available, as in our case, a
self-calibration must be achieved using signals
of opportunity, i.e., with unknown DOA, often
observed at the same frequency cell and at the same
time.
For a static (no vibrating) case and for small

calibration errors, the observability of the sensor
localization problem was initially studied by
Rockah and Schultheiss [4]; they showed that in
a two-dimensional (2D) problem, three broadband
sources are necessary for calibrating the array,
provided that the exact location of one sensor
and the direction of another one are known. The
self-calibration problem with a single but moving
source has been treated in [7].
When nondisjoint sources are considered, Weiss

and Friedlander presented a sensor self-localization
method based on the maximum-likelihood technique
for narrowband sources and for omnidirectional
sensors [8]. They used a numerical routine that iterates
alternatively between DOAs of sources and sensor
locations. The initialization step is performed by the
MUSIC algorithm, which is computed with at-rest
sensors’ locations. In [9], the same authors developed
a direct method called the constant modulus algorithm
(CMA), directly exploiting omnidirectional sensors to
separately identify the elements of the complex array
response matrix. In [10], Flanagan and Bell suggested
a method for dealing with higher static distortion
magnitudes, inspired by [8].
All the cited approaches assume static and

small calibration errors, i.e., smaller than half the
wavelength of the recorded sources. When higher
distortions are considered, phase ambiguity problems
yield false (or ghost) locations. In [11], Marcos
introduced a method using the propagation operator.
Using a partially calibrated array, it calibrates highly
distorted arrays composed of close sensors.
This paper, which is an extended version of

[13], presents a method for dealing with the array
shape self-calibration problem, based on persistent
and noncooperating sources such as TV, GSM, or
radio emissions. The antennas considered here are
inserted along a large and flexible aircraft wing; as
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a consequence, sensors are simultaneously subject to
a large static distortion and dynamical vibrations. In
addition, the antennas are sparse.
The size of the wing on which the antenna

is mounted can exceed 10 m, and the maximum
deformation can reach up to 1 m at the wing tip, i.e.,
greater than the typical wavelengths (¸). Conversely,
we assume that deformations near the fuselage are
negligible. Generally, only the very low frequency
vibrating modes (< 10 Hz) are significant. Their
magnitudes can reach up to roughly 10% of the
maximum static deformation in steady flight, i.e.,
lower than the typical wavelengths.
The paper is organized as follows. Section II states

the problem and presents the data model used to
describe the recordings provided by a large distorted
and vibrating array. In Section III, under a noise-free
assumption, a new formulation of CMA is presented
to estimate the array response matrix. Then, we study
the phase ambiguity problem and propose a solution.
A new necessary and sufficient condition for position
observability is given in Appendix B. Section IV deals
with noise. Once more inspired by CMA, we propose
a two-step method that first estimates the static array
shape and then estimates the current array shape.
The two-step method briefly introduced in [13] is
elaborated here, and extended to dual-band sensor
arrays in Section V. The last section is devoted to
numerical simulations and comparisons to Cramér-Rao
lower bounds (CRLB).

II. PROBLEM FORMULATION AND DATA MODEL

We consider N narrowband sources with the
same carrier frequency (N is assumed known) and
an array composed of M omnidirectional and identical
sensors (M >N). All are assumed to be in the same
geometrical plane. The position of the first two
sensors are known and are used to define the origin
and the x-axis of the coordinate system; see Fig. 1.
The distance between them is lower than or equal to
half the wavelength ¸ of the carrier frequency. In this
coordinate system, the current position vector of the
ith sensor is defined by

pi(t) = [xi(t),zi(t)]
T: (1)

Nominal sensor locations (for example, corresponding
to the antenna at rest) are known. The intersensor
distance, except the distance between the first two
sensors, can be greater than ¸=2. In the same way,
the distance between the current location and at-rest
location of a sensor can be greater than ¸=2; this
justifies the expression “large deformations.”
With the axis system described in Fig. 1, the DOA

of the jth source is given by the unit vector

nj = [sin(μj),cos(μj)]
T: (2)

Fig. 1. Antenna shape and sensor locations.

All sources are land based and in the same half-plane:
¡¼=2< μj < ¼=2 for all j 2 f1, : : : ,Ng. The DOA
of each source is the same for all sensors (far-field
assumption). We assume there is no multipath since
the signals originate from the ground.
We let s(t) = [s1(t), : : : ,sN(t)]

T be the vector of
the N baseband sources. The different sources are
assumed to be ergodic, stationary, and zero-mean
random processes. The signal at the output of the
sensors can be described by the M-dimensional vector
y(t) = [y1(t), : : : ,yM(t)]

T as

y(t) =A(t)s(t)+´(t) (3)

where ´(t) is the noise vector. By assumption, each
component ´i(t) (i= 1 : : :M) of the noise is an ergodic,
stationary, and zero-mean random process. Moreover,
it is spatially and temporally white with the power
´2 on each sensor. The matrix A(t) stands for the
(M £N) array response matrix. The columns of A(t)
are the steering vectors of each source. The DOA
of each source is assumed distinct, so A(t) is full
column rank. Since the sensors are omnidirectional
and identical, the modulus of each component of
the matrix A(t) is constant. It is taken equal to one
without loss of generality.
Under these assumptions, an entry aij(t) of A(t)

can be expressed as

aij(t) = exp
½
j
2¼
¸
pTi (t)nj

¾
: (4)

Since the first sensor is the origin of the coordinate
system,

a1j(t) = 1, 8 j:
We propose estimating the array response matrix

A(t) to extract the sensor locations pi(t) for all i 2
f3, : : : ,Mg.

III. SELF-CALIBRATION IN A NOISE-FREE CASE: A
DIRECT METHOD FOR LARGE DEFORMATIONS

A. Array Response Matrix Estimation

The following derivations are inspired by the
CMA proposed by van der Veen and Paulraj [12] and
adapted to the self-calibration problem by Weiss and
Friedlander [9].
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From (3), the sampled data model in the noise-free
case becomes y(tk) =A(tk)s(tk), (k = 1, : : : ,Ns).
Local Stationarity Assumption: We assume that

the sampling frequency is chosen sufficiently high
and the sample number Ns sufficiently small such
that the matrix A(tk) is locally time independent;
hence, in this section, A stands for A(tk), at times tk
(k = 1, : : : ,Ns). This assumption is realistic since the
sampling frequency is, in general, much larger than
the mechanical vibration frequency. Introducing the
(M £Ns)-output matrix [Yik] = [yi(tk)], (i= 1, : : : ,M ,
k = 1, : : : ,Ns) and the (N £Ns)-source matrix [Sjk] =
[sj(tk)], the data model becomes

Y=AS: (5)

From (5), we have

YYH =ASSHAH: (6)

Provided that the number of samples is greater than
the number of sources (Ns ¸N), SSH is full rank and
the eigenvalue decomposition of YYH yields

YYH =UN¤SU
H
N (7)

where ¤S is the diagonal matrix of the N nonnull
eigenvalues of YYH, and UN is the (M £N) matrix
of relevant eigenvectors.
The two previous expressions (6) and (7) lead us

to seek the matrix A such that

A=UNW: (8)

The problem is now reduced to the estimation of the
(N £N) matrix W.
Each entry of A can be written as aij = u

H
i wj ,

where uHi is the ith row of UN and wj is the jth
column of W. Since each entry aij has the same
modulus (= 1), we can write

kaijk2 =wHj uiuHi wj = 1, 8 i,j: (9)

From the different rows of UN , we form the M ¡ 1
matrices

Ki = ui+1u
H
i+1¡u1uH1 , i= 1, : : : ,M ¡1:

Considering the set of equations (9), we get

wHj Kiwj = 0, 8 i,j:
The well-known property of the vec(:) operator,1

vec(ABC) = (CT−A)vec(B) (where − is the
Kronecker product), yields

vec(wHj Kiwj) = (w
T
j −wHj )vec(Ki)

= vecT(Ki)(wj −w¤j )
= 0, 8 i,j:

This set of equations is summarized by

K(wj −w¤j ) = 0M¡1, 8 j, (10)

1vec(X) is a concatenation of the columns of X.

where K is a ((M ¡ 1)£N2) matrix whose ith row
is vecTfKig and 0M¡1 is the (M ¡1) null vector.
Therefore, any vector (wj −w¤j ) is in the null space
of K denoted by NfKg.
REMARK 1 Equation (9) can be written as

P(wj −w¤j ) = 1M (11)

where P is a (M £N2) matrix whose ith row is
vecTfuiuHi g and 1M is the M vector of ones.
In the literature ([9, 12]), the solution of (11) is

obtained thanks to a Householder matrix Q such that

QP(wj −w¤j ) = ¸e1
where Q= IM ¡ 2qqT=qTq with q= 1M + k1Mke1,
and e1 = [1,0, : : : ,0]

T. Here, we made another choice,
Q= IM ¡ 1MeT1 , which yields the equation

QP(wj −w¤j ) = 0M:
The reason for this choice is that our method can
be carried out on an antenna composed of identical
paired sensors, instead of a set of omnidirectionnal
sensors [14].

Since the matrix A is full column rank according
to (8), the vectors (wj −w¤j ), j 2 f1, : : : ,Ng are linearly
independent. If dimNfKg=N, then, according to
(10), those vectors span NfKg. The uniqueness
of such a basis (i.e., with a Kronecker structure) is
proved in Appendix A.
A necessary condition for having dimNfKg=N

is that matrix K must contain N2¡N independent
columns, or at least N2¡N rows. Consequently, the
array must be composed of M ¸ (N2¡N +1) sensors.
Since dimNfKg=N, any vector bk 2NfKg can

be decomposed as

bk =
NX
j=1

®j(wj −w¤j ):

Performing the vec¡1(:) operator on the previous
equation, we get

vec¡1(bk) =
NX
j=1

®j(w
¤
jw

T
j ) =W

¤§kW
T (12)

where §k = diagf®1,®2, : : : ,®Ng.
Then, we have the following proposition: It is

always possible to find two vectors b1 and b2 such
that the relevant diagonal matrices §1 and §2 satisfy
the properties that §1 is regular and § =§

¡1
1 §2 has

distinct diagonal entries.

Denoting Rk
¢
=vec¡1(bk) and using (12) for k =

1,2, we obtain

R¡11 R2 =W
¡T§WT:

Since the diagonal entries of § are all distinct, the
identification of W merges with the diagonalization of
R¡11 R2.
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Introducing the eigenvector matrix V such that
R¡11 R2 =V§

0V¡1, the matrix W corresponds to
the inverse of the transposed matrix V, except for a
permutation and a complex factor.
Substituting W by V¡T in (8), and normalizing

each column of UNV
¡T by the first term of each

column, we obtain the matrix A, except for an
unknown permutation.

B. Sensors Localization

1) Calculation of DOAs (μj): We consider
Áij 2 [¡¼,¼), the phase of entry aij of the previously
computed matrix A. From (4), it follows that

Áij =
2¼
¸
pTi nj :

Since the norm of the sensor 2 position vector is
known and is lower than ¸=2, and since the reference
axis is chosen such that p2 = [kp2k,0]T, we get

Á2j =
2¼
¸
kp2ksin(μj):

The DOAs are then given by

μj = asin
μ
Á2j¸

2¼kp2k
¶
, j = 1, : : : ,N: (13)

2) Solving Phase Ambiguities and Sensor
Localization (pi): Given pri , the at-rest position
vector, and p0i the position relative to p

r
i , the position

vector pi can be broken down into

pi = p
r
i +p

0
i, i > 2: (14)

So, entry aij can be written as

aij = exp
μ
j
2¼
¸
prTi nj

¶
exp
μ
j
2¼
¸
p0Ti nj

¶
, i > 2:

Hence,

exp
μ
j
2¼
¸
p0Ti nj

¶
= aij exp

μ
¡j 2¼

¸
prTi nj

¶
, i > 2:

(15)

We compute the argument of the right-hand side of
the previous expression (denoted by Á0ij) restricted to
[¡¼,¼):

Á0ij = arg
½
aij exp

μ
¡j 2¼

¸
prTi nj

¶¾
, i > 2:

From (15), the relative positions p0i satisfy

2¼
¸
p0Ti nj = Á

0
ij + k

±
ij2¼, i > 2 and k±ij 2 Z:

(16)

Equivalently, for any sources2664
nT1
...

nTN

3775p0i = ¸

2¼

0BB@
2664
Á0i1
...

Á0iN

3775+
2664
k±i1
...

k±iN

37752¼
1CCA : (17)

For sensor i, the scalar k±ij is the number of phase
rotations between its current position pi and its
at-rest position pri due to the jth source. For the large
deformations we consider, the integers jk±ij j may not be
zero.
We introduce the following notation:

C
¢
=[nT1 , : : : ,n

T
N]
T, Á0i

¢
=[Á0i1, : : : ,Á

0
iN]

T, ki
¢
=[ki1, : : : ,kiN]

T

and k±i
¢
=[k±i1, : : : ,k

±
iN]

T.

We now have to solve the general equation

Cp0i(ki) =
¸

2¼
(Á0i+ki2¼), i > 2 (18)

where the unknowns are p0i(ki) and ki.
It is obvious that there are infinitely many

solutions: all the solutions ki such that ki 2 ZN and
(Á0i+ki2¼) 2 range of C. In these conditions, the
relevant solutions for p0i(ki) are given by

p0i(ki) =
¸

2¼
C](Á0i+ki2¼): (19)

The superscript ] denotes the Moore-Penrose
pseudoinverse.
Nevertheless, physical considerations allow us to

claim that the true solution k±i lies in a finite subset
of ZN , say D. In the case of an airborne antenna,
kp0ik ·Nr¸, (Nr 2 N) and consequently, from (16), D
reduces to

D = f¡Nr, : : : ,Nrg£ ¢¢ ¢£ f¡Nr, : : : ,Nrg| {z }
N£

= f¡Nr, : : : ,NrgN:
Now we make the following local observability

assumption: k±i is a unique vector ki 2D such that
(Á0i+k

±
i 2¼) is in the range of C.

REMARK 2 Note that since the range of C is 2D, a
necessary condition of uniqueness is that the number
of sources is greater than 2. A sufficient condition is
provided in Appendix B.

REMARK 3 To satisfy the local observability
assumption, it may be necessary either to deal with
a higher number of sources whenever it is possible, or
to take into account additional physical considerations.
For example, we can consider that the relative
intersensor distance deformations are small (since we
are in the case of an airborne antenna), i.e.,

kpi+1¡pik¡kpri+1¡pri k
kpri+1¡prik

· ², 8 i: (20)

So, infeasible calculated positions can be discarded.
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TABLE I
Phase Ambiguities Reduction Algorithm

Initiate the range ambiguity set D and the physical model
criterion ²
1) Select a vector ki 2 D
2) Compute p0i(ki) according to (19) and pi(ki) with (14)
3) if (Á0i +ki2¼) is in the range of C, i.e., if p

0
i(ki) and ki satisfy

CTp0i(ki)¡
¸

2¼
(Á0i +ki2¼) = 0 (6)

and if pi(ki) verifies the physical constraints (20), then k
±
i = ki

and p0i(k
±
i ) = p

0
i, pi(k

±
i ) = pi,

else go to 1

To determine k±i , we use the greedy algorithm as
seen in Table I.

IV. SELF-CALIBRATION IN PRESENCE OF NOISE

A. Introduction

Now, let us consider the pratical case where the
recordings are corrupted by additive noise. Here, the
sampled data model deduced from (3) becomes

y(tk) =A(tk)s(tk) +´(tk), k = 1, : : : ,Ns (21)

and consequently, (6) is not valid anymore.
Furthermore, the phase ambiguity solution presented
in Table I of Section IIIB is particularly noise
sensitive. The classical way to counteract noise effects
is to increase the number of samples Ns. Consequently,
due to the long observation time, one cannot ignore
the time dependency of the array response matrix, and
the previous direct method cannot be used.
For the applications and observation durations

we deal with, the deformation of the antenna can
be considered as the superposition of a large static
bending (compared with the nominal shape) and low
magnitude dynamic fluctuations due to vibrating
modes, as shown in Fig. 2. We propose a two-step
method based on a data model adapted to such a
vibrating antenna. The aim of the first step is to solve
the phase ambiguities k±i from a long observation
time. We only obtain an estimate of the static
contribution of the array shape. In a second step,
from a shorter observation time, we estimate an
instantaneous array using the knowledge that there
is no longer a phase ambiguity between the static and
dynamic array shapes.

B. A Data Model Adapted to Vibrating Antennas

The position vector of the ith sensor is expressed
as

pi(t) = p̄i+ p̃i(t) (22)

where p̄i = [x̄i, z̄i]
T is the static position vector and

p̃i(t) is the dynamic position vector with a null
temporal average.

Fig. 2. Array shape dynamic model.

Substituting the position vector by its
decomposition in (4), the entries of matrix A(t)
become

aij(t) = exp
½
j
2¼
¸
p̄Ti nj

¾
exp

½
j
2¼
¸
p̃Ti (t)nj

¾
¢
= āij ãij(t):

In matrix notation, we write

A(t) = Ā ± Ã(t) (23)

where ± represents Hadamard (element-wise) matrix
multiplication.
Assuming that the dynamical distortions have low

magnitude, the entries of the dynamical array response
matrix Ã(t) can be approximated by a first-order
Taylor-series expansion:

ãij(t)
1
=1+ j

2¼
¸
p̃Ti (t)nj| {z }
fij (t)

where the symbol
1
= stands for a first-order

approximation. In matrix notation,

Ã(t)
1
=1+F(t):

1 is the M £N ones matrix such that 1ij = 1, 8i,j. F(t)
only accounts for first-order time-dependent terms.
The first-order approximation can be done only if¯̄̄̄

2¼
¸
p̃Ti (t)nj

¯̄̄̄
¿ 1 (24)

or
2¼
¸
kp̃i(t)kjcos(p̃i(t),nj)j ¿ 1:

A sufficient condition to validate the inequality (24)
8j is

kp̃i(t)k¿
¸

2¼
: (25)

Hence, (23) can be expressed by

A(t)
1
=Ā+D(t) (26)

where D(t)
¢
=Ā ±F(t) is the time-dependent deviation

matrix.
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Substituting A(t) using (26) into (3), we have

y(t) = [Ā+D(t)]s(t) +´(t): (27)

This is our new data model adapted for vibrating
antennas.

C. A Two-Step Scales Method for Self-Calibration in
Presence of Noise

1) First Step-Estimation of Static Array Shape:
From (27), the new sampled data model becomes

y(tk) = [Ā+D(tk)]s(tk)+´(tk): (28)

Let us compute the following matrix

Ry
¢
=
1
Ns

NsX
k=1

y(tk)y
H(tk):

From (28), we obtain

Ry = ĀRsĀ
H +

1
Ns

NsX
k=1

D(tk)s(tk)s
H(tk)D

H(tk)

+
1
Ns

NsX
k=1

´(tk)´
H(tk) +T(Ns) (29)

where the matrix T(Ns) collects all the cross-terms,
and Rs

¢
=(1=Ns)

PNs
k=1 s(tk)s

H(tk).

Since Ry is computed with a high number of
samples (long observation time), it is important
to study the asymptotic behavior of the previous
equation.
When Ns!1, we simultaneously have:
1) ĀRsĀ

H! ĀEfssHgĀH (where Ef:g is the
expectation operator) because of the ergodicity and
stationarity properties of the sources,
2) (1=Ns)

PNs
k=1D(tk)s(tk)s

H(tk)D
H(tk)! constant

matrix depending on the magnitude of the vibrations
(see Appendix C),
3) (1=Ns)

PNs
k=1 ´(tk)´

H(tk)! ´2IM (where IM is
the (M £M) identity matrix) because of the statistical
properties of the noise,
4) T(Ns)! 0, as shown in Appendix C.

Hence, for the long observation time we consider
here, Ry reduces to

Ry = ĀRsĀ
H +

1
Ns

NsX
k=1

D(tk)s(tk)s
H(tk)D

H(tk)| {z }
2nd order matrix

+´2IM:

(30)

Moreover, if the vibration’s magnitudes are small
(see (25)), the second-order matrix of the previous
equation can be neglected and we finally obtain

Ry
1
=ĀRsĀ

T + ´2IM: (31)

As in Section IIIA, the estimation of Ā is inspired
by the methods described in [12] and [9]. Since
Rs is a (N £N) regular matrix, the eigenvalue
decomposition of Ry can be written as

Ry =U
·
¤s 0

0 0

¸
UH + ´2UUH: (32)

¤s+ ´
2IN is the diagonal matrix containing the

N largest eigenvalues of Ry. Denoting UN as the
matrix of eigenvectors corresponding to the N largest
eigenvalues of Ry, the matrix Ā has the structure

Ā=UNW, and can be hence estimated by using CMA
as described in Section IIIA.
Then, from this matrix Ā, we use the method

developed in Section IIIB, substituting the position
vector pi by p̄i.
First, we estimate the DOAs μj according to (13).
Second, the vector of phase rotations k±i between

p̄i and p
r
i is found as

k±i =minki2D

°°°°CTp0i(ki)¡ ¸

2¼
(Á0i+ki2¼)

°°°° (33)

instead of (6) in the greedy algorithm.
Finally, the static array shape is given by

p̄i = p
r
i +p

0
i: (34)

An instantaneous shape can be obtained with the
following second step.
2) Second-Step. Estimation of Dynamic Array

Shape: This step estimates the current position
pi(tk) (8k = 1, : : : ,Ns) from the knowledge of the
static position p̄i estimated in Step 1. The relative
deformation between the estimated static array and the
actual one is small, i.e., always smaller than half the
wavelength, and there is no phase rotation. Hence, the
very noise-sensitive stage to find the phase rotation
number (see (6) in Table I) is no longer necessary. So
it is possible to reduce the number of samples down
to Nd (Nd¿Ns) to satisfy the local time independence,
i.e., pi(tl) = pi(tk), l 2 fk, : : : ,k+Ndg; therefore, A is
a constant piecewise matrix A(tl) =A(tk), l 2 fk, : : : ,
k+Ndg.
The data model yields

y(tl) =A(tk)s(tl) +´(tl), l = k, : : : ,k+Nd: (35)

At each time tk, the matrix A(tk) is obtained by
performing a CMA (8)—(13) on Ry(tk), where

Ry(tk) =
1
Nd

k+NdX
l=k

y(tl)y
H(tl): (36)

Now, let us compute the argument Áij(tk) of an entry
aij(tk) of A(tk). This argument satisfies

Áij(tk) + k
±
ij2¼ =

2¼
¸
pTi (tk)nj :
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TABLE II
Direct Large Array Shape Self-Calibration Algorithm

Step 1: Static array shape estimation (see Section IVC1)
1.1) Estimate Ā from Ry computed with Ns samples, see

Section IIIA
1.2) Estimate the DOAs μ = [μ1, : : : ,μN ]

T, (13)
1.3) Determine the phase rotation number vector fk±i gMi=3 between

fpri gMi=3 and fp̄igMi=3 from the greedy algorithm of
Section IIIB using the criterion (33)

1.4) Estimate the static sensor locations fp̄igMi=3, using (34)
Step 2: Dynamic array shape estimation (see Section IVC2)
Set k = 1
2.1) Estimate A(tk) from Ry(tk) computed on Nd samples, see

Section IIIA
2.2) Estimate fp̃i(tk)gMi=3 from fp̄igMi=3 and μ, using (37)

2.3) Sensor’s location estimation fpi(tk)gMi=3, using (22)
Set k = k+1
go back to 2.1 until k =Ns¡Nd

Then, let us compute the argument Á̄ij of an entry of

Ā of Step 1. We still have

Á̄ij + k
±
ij2¼ =

2¼
¸
p̄Ti nj :

Since the number of phase rotations k±ij is the same
in the two previous equations, thanks to (22), the
dynamic position p̃i(tk) = pi(tk)¡ p̄i satisfies

nTj p̃i(tk) =
¸

2¼
[Áij(tk)¡ Á̄ij], i > 2:

From the set of sources, the dynamical positions p̃i(tk)
can then be computed with

p̃i(tk) =
¸

2¼

2664
nT1
...

nTN

3775
]2664
Ái1(tk)¡ Á̄i1

...

ÁiN(tk)¡ Á̄iN

3775 : (37)

Finally, p̄i and p̃i(tk) being known, the current position
vector pi(tk) can be obtained for any sensor i at time tk
using (22).

D. Algorithms

The two time scale previous method is summarized
in Table II.

REMARK 4 Practically, the available number of
samples Ns does not allow the matrix T(Ns) to be
neglected in the expression of Ry in (29). Moreover
the inequality (25) is not strong enough to ensure
that the second-order terms in (30) will be negligible.
So the matrix obtained in Step 1.1 of the previous

algorithm is only a coarse version of Ā, denoted by
ˆ̄
A.

Consequently, Step 1.2 yields to a biased estimation of
the DOAs μ. This error is sufficiently small so that the
estimation of the numbers of phase rotations remains
valid in Step 1.3. Equivalently, the coarse array

TABLE III
Iterative Large Array Shape Self-Calibration Algorithm

Step 1: Coarse static array shape estimation (see Section IVC1)
1.1) Estimate

ˆ̄
A from Ry computed with Ns samples (see

Section IIIA)
1.2) Estimate DOAs μ(0) using (13)
1.3) Determine the phase rotation number vector fk±i gMi=3 between

fpri gMi=3 and f ˆ̄pigMi=3 from (33)

1.4) Estimate the biased static sensor locations f ˆ̄pigMi=3, using
(34)

Step 2: Iterative bias reduction–Estimation of the dynamic array
shape
Set k = 1
2.1) Estimate A(tk) from Ry(tk) computed on Nd samples; see

Section IIIA
2.2) Estimate DOAs μ̂, using (13)
2.3) Refine DOAs using μ(k) = (1=(k+1))(μ̂+ kμ(k¡1))
2.4) Estimate fp̃i(tk)gMi=3 from fp̄igMi=3 and μ(k), using (37)

Set k = k+1
go back to 2.1 until k =Ns¡Nd
2.5) Estimate the final sensor’s location fpi(tNs¡Nd )g

M
i=3, using

(22)

shape obtained f ˆ̄pigMi=3 is a biased but nonambiguous
estimate.

Since the DOAs are time independent, it is
possible to iteratively refine the DOA estimates during
Step 2 to iteratively unbias the dynamical position
pi(tk).
Of course, with a backward iterative procedure,

it is always possible to unbias the static positions as
well.
Based on previous considerations, we propose the

algorithm as seen in Table III.
Only this last algorithm is used in our numerical

simulations.

V. EXTENSION TO DUAL-BAND SENSOR ARRAYS

A. Contribution of Dual-Band Sensors

Our algorithms allow us to self-calibrate arrays
composed of at least M =N2¡N +1 sensors. As
we noted in Remark 3 of Section IIIB, the number
of ambiguous solution decreases as the number of
available sources increases. Practically, the necessary
number of sensors quickly becomes prohibitive. One
way to deal with a higher number of sources while
maintaining the same number of sensors is to use
multi-band sensors.
As an example, with our method, when the

2D problem of large array shape self-calibration
is considered, at least 3 sources are necessary
(Remark 2). The minimum number of sensors must
then be equal to 7 for a single carrier frequency case,
but only 3 dual-band sensors are needed with two
carrier frequencies.
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B. Algorithm Extension to Dual-Band Sensors

The extension to dual-band sensors case is
straightforward. In fact we have to deal with two
independent records

y1(t) =A1(t)s1(t)+´1(t)

y2(t) =A2(t)s2(t)+´2(t)

where the superscripts 1 and 2 are used to distinguish
the two different wavelengths ¸1 and ¸2. The
estimation of the two array response matrices A1(t)
and A2(t) is separately performed using CMA on
each relevant recording (Steps 1.1 and 2.1 of previous
algorithms). The others steps of the algorithms are
performed with the whole phases obtained from the
two wavelengths.

VI. NUMERICAL SIMULATIONS

Our algorithm is tested on a large antenna (6 m)
subjected to large deformations such that their
magnitude at the tip of the array reaches 0.6 m.
The source signals are generated by a Gaussian
number random generator. For each simulation, white
Gaussian noise is added under different signal-to-noise
ratio (SNR), defined as SNR= 10log10(¾

2=´2)
where ¾2 is the power of one source on a sensor
and ´2 is the noise power (the same on each sensor).
The output signals are sampled at 60 kHz. Monte
Carlo experiments are performed with 200 runs.
The performance of our algorithm is compared with
the CRLB. We also plot the corresponding 90%
confidence ellipse.

A. Case I. Large Deformation of a Static
Antenna–Single Carrier Frequency Sources

The array is composed of M = 13 omnidirectional
sensors. Only the two first sensors are ¸=2 apart. At
rest, the coordinates pri of the sensor i are

pr =
¸

2

·
0 1 5 7 13 17 20 26 29 31 35 38 40

0 : : : 0

¸
:

We assume only a large static distortion without
vibration phenomena (Fig. 3). At the tip of the array,
the magnitude of the antenna’s distortion reaches
2¸; hence, 6 sensors (sensors 8 to 13) have an
“ambiguous location.” Three sources are impinging
the array with the same wavelength ¸= 0:3 m. The
DOAs are μ = [¡36±,3±,20±]. The SNR is equal to
40 dB.
Fig. 4 presents the self-calibration result at the end

of Step 1 without the resolution of phase ambiguities
using Ns = 7500 samples. As a consequence, the
rightmost six sensor positions are not correctly
estimated.

Fig. 3. Simulated array with static distortion only.

Fig. 4. 200 static bending estimates without resolution of phase
ambiguities.

Fig. 5. 200 static bending estimates.

Fig. 5 presents the Step 1 result using the phase
ambiguity resolution procedure (see Table I of
Section IIIB) inside the range ambiguities D =
f¡2,¡1,0,1,2g3, completed by the physical model
(20) with ²= 0:1. We notice that all of the phase
ambiguities have been resolved. Fig. 6 focuses on
the rightmost sensor. We compare the results with
a 90% confidence ellipse computed from the CRLB
presented in [8].
Table IV details the bias and standard deviation

of the location estimates of the rightmost sensor. The
square root of the CRLB is also provided.
We can see that the estimation procedure is almost

efficient.
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TABLE IV
Performance of the 200 Rightmost Sensor Localizations

Unit = 10¡3¸ Bias STD ¾CRB

x ¡0:065 1.647 1.223
z ¡0:003 0.633 0.557

Fig. 6. Focus on 200 estimates of location of rightmost sensor
and 90% ellipse based on CRLB.

Fig. 7. Array at rest and with deformations (static+dynamic).

B. Case II. Large Deformation of a Vibrating
Antenna–Single Carrier Frequency Sources

In this subsection, the array, the static deformation,
the DOAs and the SNR are the same as the previous
subsection. Here, the array is subject to a 2 Hz
vibrating mode presented via the dotted line in Fig. 7.
The node is on the first sensor, and the anti-node
on the rightmost sensor has a 0:05¸ magnitude. For
Step 1, we take Ns = 7500, and for Step 2, we take
Nd = 300.
Figs. 8 and 9 present the results at the end

of Step 1 (static shape estimation) using the
phase ambiguity resolution procedure with D =
f¡2,¡1,0,1,2g3 and ²= 0:1.
Fig. 9 focuses on the location estimates of the

rightmost sensor. It illustrates a localization bias
(16:77 10¡3¸ for x, 30:67 10¡3¸ for z). As we said
in Remark 4, this bias is due to the presence of
nonnegligible 2nd-order terms in the matrix in Ry.
Nevertheless, there are no ghost positions the static
shape estimates.
Note that the position obtained at the end of Step 1

is used in Step 2 initialization. Fig. 10 presents the

Fig. 8. 200 estimates of static bending.

Fig. 9. Focus on 200 estimates of estimates of location of
rightmost sensor.

Fig. 10. 200 estimates of array shape.

Fig. 11. Focus 200 estimates of location of rightmost sensor and
confidence ellipse.

final results for the 200 runs. Fig. 11 focuses on the
estimated position of the 13th sensor, which is the
most difficult to locate.
The elements of the CRLB corresponding to

sensor position are greater when the sensors move
than when they are motionless. Because we do not
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Fig. 12. Step 2 intermediate results and confidence ellipse for
13th sensor final position.

Fig. 13. Simulated 5-sensor array at rest and with deformations.

have any model for this motion, we use the CRLB
computed for the static case as reference.
Bias and standard deviation for the location

estimates of the 13th sensor are detailed in Table V.
The square root of the CRLB is also provided for
comparison.
We can see that this two-step method leads to an

unbiased location estimate of the rightmost sensor.
Compared with the static CRLB one can say the
method remains almost efficient.
Fig. 12 presents an example of iterative

localization performed by Step 2. One can see the
improvement of the location estimate at each iteration.
Table VI exposes the performance of the iterative
algorithm for different SNRs. We consider the bias,
the standard deviation, and the square root of the
CRLB for the estimation of the final position of the
13th sensor. One can see the statistical efficiency of
our method, even for a low SNR.

C. Case III. Large Deformation and Vibrating
Antenna–Dual-Band Sensors

In this subsection, the array and the deformations
are the same as in Subsection VIB. However, here
we consider sources of different wavelengths, ¸1 =
0:3 m and ¸2 = 0:5 m. There are 3 sources associated
with each wavelength. The DOAs are μ1 = μ2 =
[¡36±,3±,20±] for each relevant wavelength.

TABLE V
Performance of the 200 Estimates of the Rightmost Sensor at the

End of Step 2

Unit = 10¡3¸ Bias STD ¾CRB

x ¡0:040 1.636 1.232
z ¡0:009 0.649 0.554

TABLE VI
Performance of the 200 Rightmost Sensor Localizations According

to Various SNR

Unit = 10¡3¸ 20 dB 30 dB 40 dB

Bias x ¡0:569 ¡0:198 ¡0:040
Bias z ¡0:031 ¡0:022 ¡0:009
STD x 16.42 5.175 1.636
¾CRB x 12.32 3.895 1.232

STD z 6.343 1.984 0.649
¾CRB z 5.547 1.754 0.554

TABLE VII
Performance of 200 Location Estimates for the Rightmost Sensor

using Dual-Band Sensors

Unit = 10¡3¸ 0 dB 10 dB 20 dB 30 dB 40 dB

Bias x 15.84 3.979 1.259 0.418 0.156
Bias z ¡0:970 ¡1:177 ¡0:439 ¡0:143 ¡0:043
STD x 135.1 41.05 12.95 4.103 1.310
¾CRB x 100.5 31.14 9.828 3.101 0.983

STD z 56.61 17.56 5.569 1.769 0.579
¾CRB z 46.14 14.11 4.445 1.405 0.444

TABLE VIII
Unsolved Phase Ambiguity (%) SNR= 10 dB

% ²=1 ²= 0:1

Mono-sensor 70% 1.5%
Dual-sensor 1% 0%

Table VII shows the performance, according to
various SNR, compared with the square root of the
corresponding CRLB. The algorithm remains almost
efficient, and even allows us to deal with low SNRs
(10 dB and 0 dB).
Table VIII gives the percentage of unsuccessful

location estimates arising from unresolved phase
ambiguities between several cases: mono- and
dual-sensors, coupled, or not, to physical constraints.
Here we have SNR= 10 dB. Robustness increases
when dual sensors are coupled to physical
constraint.

D. Case IV. Large Deformations of a Vibrating,
Sparse Dual-Band Array

This section studies the self-calibration of sparse
array composed of only M = 5 sensors (Fig. 13). At
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TABLE IX
Performance of the 200 Dual-Band Rightmost Sensor

Localizations

Unit = 10¡3¸1 10 dB 20 dB 30 dB 40 dB

Bias x 2.284 1.105 0.407 0.156
Bias z ¡0:821 ¡0:188 ¡0:045 ¡0:006
STD x 55.82 17.65 5.615 1.818
¾CRB x 50.01 15.81 4.999 1.581

STD z 20.78 6.471 2.036 0.647
¾CRB z 18.62 5.848 1.848 0.584

rest, the sensor coordinates are

pr =
¸1

2

·
0 1 32 36 40

0 0 0 0 0

¸
:

The different wavelengths are ¸1 = 0:3 m and ¸2 =
0:5 m. There are 2 sources in each band. The DOAs
are, respectively, μ1 = [¡36±,3±] and μ2 = [¡6±,16±].
Performance according to various SNRs and

comparisons with the square root of the corresponding
CRB are given in Table IX.

VII. CONCLUSION

This paper presented a new, almost efficient
method for self-calibrating large distorted and
vibrating antennas using noncooperating narrowband
sources. The estimation of the different array response
matrices (static and dynamic) is based on an original
formulation of the CMA. Then, we study and
solve the phase ambiguities arising from the large
distortions to provide a coarse estimate of the static
array shape. Finally, the missing phase rotation
numbers are estimated, and the same are iteratively
processed to obtain an almost efficient estimate of
array position.

APPENDIX A

In the subspace NfKg, any vector of the form
v− v¤ can be written as

v− v¤ =
NX
j=1

°iwj −w¤j :

We can equivalently rearrange this vector
decomposition in terms of matrices of rank 1 using
the vec¡1(:) operator:

vec¡1(v− v¤) = v¤vT =
NX
j=1

°jw
¤
jw

T
j :

Since all the matrices involved have rank 1, all
coefficients °j are zero except for one. Consequently,

any vector structured as v− v¤ 2 NfKg is necessarily
collinear to one of the vectors wj −w¤j . We can then
claim that W is unique, except for a permutation and a
scaling factor over its columns.

APPENDIX B

From a true position pi, let us consider a
nonobservable shift ¢pi, i.e.,

exp
½
j
2¼
¸
(pTi +¢p

T
i )nj

¾
= aij , 8 j:

From aij = expfj(2¼=¸)pTi njg,
2¼
¸
¢pTi nj =¢kij2¼, 8 j: (38)

We can write

kij = k
±
ij +¢kij , 8 j

where kij is the phase rotation parameter we use in
the greedy algorithm of Section IIIB, and k±ij denotes
the phase rotation number corresponding to the true
sensor i position. Because of physical considerations,
kij is searched in the finite domain D = f¡Nr, : : : ,NrgN .
It is interesting to rewrite (38) as

1
¸
k¢pikcos(nj ,¢pi) =¢kij , 8 j = f1, : : : ,Ng:

Since the DOAs nj are distinct by assumption
and the function cosine is even, it is clear that it is
impossible to have more than two identical ¢kij .
As a consequence, since #fDg= 2Nr+1, when N >
4Nr+2, all the kij cannot be in D, and the problem is
locally observable.

APPENDIX C

Each entry yi(tk) of the vector y(tk) is given by

yi(tk) =
X
i0
(āii0 + dii0(tk))si0(tk) + ´i(tk) (39)

where āii0 and dii0(tk) are the entries of matrices Ā
and D(tk). While si0(tk) is a realization of a random
signal, assumed to be stationary and ergodic, dii0(tk) is
a deterministic time-dependent function. Because of
the vibrational origin, dii0(tk) is periodic, and its time
average is null. The period is the same for all i and i0.
Using (39), each entry rij of Ry can be expressed

as

rij =
1
Ns

X
k

"X
i0
(āii0 + dii0(tk))si0(tk) + ´i(tk)

#
24X

j0
(ājj0 + djj0(tk))sj 0(tk)+ ´j(tk)

35¤
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or

rij =
1
Ns

X
i0j0k

[(āii0 + dii0(tk))si0(tk)]

£ [(ājj 0 + djj 0(tk))sj0(tk)]¤ (40a)

+
1
Ns

X
i0k

[(āii0 + dii0(tk))si0(tk)]´j(tk)
¤ (40b)

+
1
Ns

X
j 0k

´i(tk)[(ājj0 +djj0(tk))sj 0(tk)]
¤ (40c)

+
1
Ns

X
k

´i(tk)´
¤
j (tk): (40d)

Consider a particular element, denoted ei0j0 , of the sum
in term (40a) of the previous equation, for a given i0

and j 0:

ei0j0 =
1
Ns

X
k

[(āii0 + dii0(tk))si0(tk)][(ājj 0 + djj 0(tk))sj 0(tk)]
¤:

The entry ei0j 0 can be split into

ei0j 0 = āii0

"
1
Ns

X
k

si0(tk)s
¤
j 0(tk)

#
ā¤jj0 (41a)

+
1
Ns

X
k

dii0(tk)si0(tk)s
¤
j0(tk)d

¤
jj0(tk) (41b)

+ āii0
1
Ns

X
k

si0(tk)s
¤
j0(tk)d

¤
jj0(tk) (41c)

+
1
Ns

X
k

[dii0(tk)si0(tk)s
¤
j 0(tk)]ā

¤
jj0 : (41d)

PROPOSITION The entries tij(Ns) of T(Ns)! 0 when
Ns!1.
PROOF The entries of T(Ns) are given by tij =
(40b)+ (40c)+

P
i0j 0[(41c)+ (41d)].

We first consider the term (41d) = ā¤jj0(1=Ns)
¢PNs

k=1 dii0(tk)si0(tk)s
¤
j0(tk).

Assume that a period djj 0(tk) is described by
np samples and that there are Np periods in the Ns
samples corresponding to the observation time; we
have Ns = npNp+ nr (where nr, the remaining number
of samples, is always < np). Obviously, when Ns!1,
we have Np!1 since np is constant and nr < np.
In (41d), the sum over the samples can then be

expressed as

(41d) =
ā¤jj0
np

npX
k=1

dii0 (tk)
1

Np+(nr=np)

Np¡1X
l=0

si0 (tl£np+k)s
¤
j0 (tl£np+k)

+
ā¤jj0
Ns

nrX
k=1

dii0 (tk)si0 (tk)sj0 (tk):

For a given k, si0(tl£np+k), (l = 0, : : : ,Np) is a
subseries extracted from the si0(tl) (l = 1, : : : ,Ns) by
undersampling. We denote such an undersampled

signal as spi0 (tl), l = 0, : : : ,Np. Assuming that such
subseries remain ergodic and stationary, as are their
native series, we have

lim
Np!1

1
Np+(nr=np)

NpX
l=0

si0(tl£np+k)s
¤
j 0(tl£np+k) = Efspi0sp¤j 0 g

(42)
and consequently

lim
Np!1

ā¤jj0
np

npX
k=1

dii0(tk)
1

Np+(nr=np)

£
Np¡1X
l=0

si0(tl£np+k)s
¤
j 0(tl£np+k)

=
ā¤jj0
np

npX
k=1

dii0(tk)Efspi0sp¤j0 g:

Since dii0(tk) is periodic and its temporal average is
null, we can conclude that this limit is equal to zero.
When the magnitudes of signals and vibrations are

bounded, there exists an upper bound for the modulus
of this previous expression:

1
Ns

¯̄̄̄
¯
nrX
k=1

dii0(tk)si0(tk)s
¤
j 0(tk)

¯̄̄̄
¯

· nr
Ns

max
k2f1,:::,nrg

jdii0(tk)si0(tk)s¤j0(tk)j<1:

Since nr < np, this last upper-bound tends
toward 0 when Ns!1. Consequently, we have
limNp!1(41d) = 0. For the same reasons, the term
(41c) ! 0 when Ns!1. Taking into account the
independence of sources and noise and their centering,
similar developments show that (40b) and (40c) ! 0
when Ns!1.
PROPOSITION The entries of the matrix
(1=Ns)

PNs
k=1D(tk)s(tk)s

H(tk)D
H(tk)<1 when Ns!1.

PROOF The entries of such a matrix are given byP
i0j0(41b). As in the (41d) expression, the periodic

part of (41b) can be isolated to obtain

1
Ns

NsX
k=1

dii0(tk)d
¤
jj0(tk)si0(tk)s

¤
j 0(tk)

=

0@ 1
np

npX
k=1

dii0(tk)d
¤
jj 0(tk)

£ 1
Np+(nr=np)

Np¡1X
l=0

si0(tl£np+k)s
¤
j0(tl£np+k)

1A
+
1
Ns

nrX
k=1

dii0(tk)d
¤
jj 0(tk)si0(tk)s

¤
j0(tk): (43)

When Ns tends to 1, the last term (1=Ns)
Pnr
k=1 dii0

(tk)d
¤
jj 0(tk)si0(tk)s

¤
j0(tk) tends to 0 for the same previous
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reasons. Because of the presence of the quadratic
expression dii0(tk)d

¤
jj 0(tk), the first term in (43) only

tends toward a constant when Ns (then Np) tends to 1:

lim
Np!1

0@ 1
np

npX
k=1

dii0(tk)d
¤
jj 0(tk)

£ 1
Np+(nr=np)

Np¡1X
l=0

si0(tl£np+k)s
¤
j 0(tl£np+k)

1A
=
1
np

npX
k=1

dii0(tk)d
¤
jj0(tk)Efspi0sp¤j 0 g

and then
P
i0j 0(1=Ns)

PNs
k=1 dii0(tk)d

¤
jj0(tk)si0(tk)s

¤
j 0(tk)

tends toward
P

i0j0(1=np)
Pnp

k=1 dii0(tk)d
¤
jj0(tk)Efspi0sp¤j 0 g

when Ns!1.
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(ONERA), Salon de Provence, France.

Jean Barrère was born in Bayonne, France, in 1961. He received the Ph.D.
degree in mechanics from the University of Bordeaux I, France, in January 1990.
From 1990 to 1994, he worked for ELF-Aquitaine (currently Total-Fina-Elf),

CERFACS (European Centre for Research and Advanced Training in Scientific
Computation), and Aerospatiale (currently EADS), all in Toulouse, France. His
work focused on filtration laws in porous media studies and then plane structure
design. He is currently a research engineer on the Signal and System Team of
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“Habilitation à Diriger des Recherches” from the Université du Sud Toulon-Var,
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