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Abstract—The purpose of this communication is to show
that wavelet transform provides a relevant way to the Fourier
transform in the case of central frequency measurement of a SAW
resonator. After recalling the limits of the Fourier transf orm, we
present a method based on wavelet transform modulus maxima
which allows staying in the time domain without using the
frequency domain. We show that this approach is a way to
improve the spectral resolution and we propose a technique,
checked on experimental signals, able to measure the SAW
resonator frequency according to the desired spectral resolution.

I. M OTIVATION AND OBJECTIVE

SAW resonators are more and more used as wireless and
batteryless sensors [1]. Both time domain and frequency
domain readers are in competition to determine the reso-
nance frequency of the sensor (Fr). The frequency domain
method shows the advantage to use standard and then low
cost components, but suffers from a low accuracy. If from a
theoretical point of view, the smallest value of the spectral
resolution is given by the Fourier transform [2], the situation
is significantly different when considering the experimental
conditions. In fact, the transition from theory to practical
experience inevitably introduces the notion of observation
window T0. Therefore, in a digital system, instead to be
considered as infinitesimally small, the spectral resolution∆Ff

is constant and defined by∆Ff = 1/T0.
This paper aims at exploring an alternative way offering

more degrees of freedom, which consists to implement a time-
based approach by using the wavelet transform (WT).

II. SAW DEVICES

Surface acoustic wave (SAW) devices, are a key components
in communication systems and are widely used as filter, delay
lines or resonators. They also offer a news and very promising
solutions in a wide range of applications including physical
and chemical sensors. In addition to being small, simple and
robust, these devices have the advantage of being passive
(batteryless), remotely requestable (wireless) and inexpensive
if fabricated on a large scale. The use of SAW devices as
passive and wireless sensors allows them to operate in extreme
conditions such as those with high levels of radiation, high
temperatures up to1000◦C, or electromagnetic interference, in
which no other wireless sensor can operate. The SAW devices
are highly sensitive to external physical parameters and toany

disturbance that may affect the velocity, distance travel or even
the mode of wave propagation. A disturbance resulting in a
variation of the electrical response of the device (frequency,
phase, amplitude...). SAW systems are no exception to this
rule and are sensitive to three major types of disturbances:
the change in temperature, deformation and in gaseous, liquid
or solid species deposited on acoustic wave travel surface.
The change in temperature and deformation induces an ef-
fect on both a variation of speed (alteration of elastic and
piezoelectric coefficients) and a change of path length. Due
to their small size, SAW devices can react very fast to the
changes in the environmental conditions. Two configurations,
can be considered to use SAW devices as wireless sensor:
delay line or resonator. In this paper we will focus our study
on the resonator one. Its principle as sensor is described in
following. The technological advances in the field of SAW
have allowed the achievement of resonators with a high quality
factor (Q) which allows design sensor based SAW resonator
(SAWR) with high sensitivity, accuracy, long-term stability
and the possibility of storing electromagnetic energy. A SAWR
consists of a piezoelectric substrate, an interdigital transducer
(IDT), and two reflectors in the direction of the propagating
wave (Fig. 1). The IDT is connected to an antenna. It receives
energy for the excitation of the SAW by an electromagnetic
wave coming from the interrogation unit. The IDT converts
electrical energy to mechanical energy of the surface acoustic
wave. The two reflector gratings form a resonating cavity in
which a standing wave is generated in the case of resonance. A
portion of the stimulating electromagnetic energy is stored in
this standing wave. After the stimulating signal is switched
off, energy still is present in the form of the SAW. The
IDT converts a portion of the mechanical energy back to
electrical energy now because the process of energy conversion
is partially reversible. The electrical energy is transmitted as
an electromagnetic wave back to the interrogation unit and
can be analyzed. Typical response obtained at the input of
interrogation unit is shown in figure 1. Duration of oscillations
is of course depending on quality factor of the resonator but
also on the operating frequency. Resonance frequency of the
sensor, directly linked to the mesurand, could be extracted
from using different techniques.
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Fig. 1. SAW wireless sensor in one port resonator configuration.

III. WAVELET TRANSFORM

If the Fourier transform has the ability to provide the fre-
quency composition of a signal, so what about the pertinence
of imaginary exponentials to describe it? What are the accept-
able consequences in the sense of Gabor-Heisenberg? (even
if the short-time Fourier transform improves the situation,
it is not relevant within the meaning of the time-frequency
paving, nor in terms of computation time and even sometimes
of precision).

Wavelets provide satisfactory answers to all asked questions.
They achieve the minimum limit imposed by the uncertainty
principle of Gabor-Heisenberg with a better suited time-
frequency paving [4]. They also allow considering unimagined
analysis ways by using functions families well localized in
time and with varied morphological characteristics.

The wavelet transform provides a new kind of analysis
because it explores structures as finely as possible at various
observation scales to find the one that is most relevant to
identify the useful information. It is defined by the weighted
scalar product

Wfs,b =
1√
s

∫

R

f(t)ψ

(

t− b

s

)

dt. (1)

The operation is therefore to measure the behavior of the
signal to be analyzedf around timeb and in an observation
radius proportional to the scales. The wavelet transform acts
as an operator that breaks up quantity to be analyzed by a
family of translated and dilated wavelets1√
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from a
mother waveletψ checking the following properties:

• the mother waveletψ is characterized by a number of van-
ishing momentsm such as〈tm, ψ(t)〉 =

∫

R
tmψ(t)dt =

0. This property is decisive to optimize detection of a
singularity since in such a case the analysis is unable to
detect any polynomial of degree less thanm− 1.

• the wavelet transform also has the ability to reconstruct
the signal f from the decomposition coefficients by
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spects the admissibility condition:
∫ +∞
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|ω| dω =

∫ 0
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|ω| dω < +∞ or also that
∫

R
ψ(t)dt = 0 et

∫

‖ψ(t)‖2 = 1 o ψ ∈ L2(R).

IV. FREQUENCY MEASUREMENT: FOURIER APPROACH

In the case of SAW resonators, signal to be processed can
be modeled by an amplitude modulated gaussian with a carrier
frequencyFr (Fig. 2).
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Fig. 2. SAW resonator signal model: (a) time domain, (b) frequency domain.

Consequently, in theory, it is obvious that the smallest
value in terms of spectral resolution is given by the Fourier
transform since the spectral support of the analyzing basis
is infinitely small and therefore the accuracy tends to the
maximum possible. This transform is the ideal tool to reveal
the spectral information of a signal as long as it is stationary.
However, if we consider experimental signal, its acquisition
amounts to multiplie it by a rectangular window of widthT0.
Thus, in a digital system, the spectral resolution∆Ff , which
was previously infinitely small, becomes equal to a constant
only dependent on the duration of the acquisition window and
can be written:

∆Ff =
1

T0
. (2)

It is important to note that the spectral resolution∆Ff is
independent of the number of samplesN but also to the
sampling frequencyFs. For proof, just observe the relationship

T0 = N · Ts, (3)

and see ifN increases thenTs decreases to maintain the
constant value ofT0. Thus, for more precision in a Fourier
transform, we must increase the observation durationT0 and
therefore the analysis time.

A first improvement way would be to use techniques such
as zero-padding, symmetrization, periodization or expansion.
In all cases, it comes to artificially increaseT0. We did not
used them because they all introduce more or less important
artifacts.

Another solution with more degrees of freedom is to imple-
ment a time-based approach by the wavelet transform.

V. FREQUENCY MEASUREMENT: WAVELET APPROACH

A. Wavelet-based method

The wavelet transform is a tool particularly well-suited to
the detection of singularities in a signal. These ones can be
highlighted and characterized by calculating the Lipschitz ex-
ponent (or Hölder) and the use of wavelet transform modulus
maxima [3]. Our method is precisely based on the calculation
of these local modulus maxima but in an original way by
deducing the oscillation frequency of the SAW resonator from
their recurrence period.

If Wf(s, x) is the wavelet transform of a functionf(x)
then a modulus maximum is the point(s0, x0) where



|Wf(s0, x)| < |Wf(s0, x0)| (4)

whenx belongs to either the right or the left neighborhood
of x0, and

|Wf(s0, x)| 6 |Wf(s0, x0)| (5)

whenx belongs to the opposite neighborhood ofx0.
A maxima line is a connected curve of the modulus maxima

in the scale space(s, x).
For the considered signal class, and by selecting an ap-

propriate wavelet, computation of maxima lines brings up an
alignment of these ones through scales as shown in Fig. 3c.
By choosing the most appropriate scales range∆sopt, we can
deduce, for a signal withp periods, the expression ofFr by

Fr =
1

2(2p− 1)

2p−1
∑

i=1

1

(tsopt,‖mi+1‖ − tsopt,‖mi‖)
, (6)

with tsopt,‖mi‖: time point at the optimal scalesopt of the
modulus maximum‖mi‖.

Finally, the use of the wavelet transform leads to a simple
calculation of half-periods from which we deduce the center
frequency value of the signal. Its main advantage is to stay
in the time space and to obtain, with a constant observation
duration, the spectral resolution∆Fw directly related to the
sampling frequencyFs and hence to the number of samplesN .
Thus, the spectral resolution is calculated from the difference
between two time points:

∆Fw = Fr −
1

Ts + Tr
, (7)

with Tr = 1/Fr andTs = 1/Fs.
We study in Section V-C the behavior of∆Fw according

to T0 andN .

B. Wavelet choice

The sensitive point, recurrent to any application, concerns
the choice of the wavelet. Indeed, if some are behaving
remarkably well (Fig. 3c), all wavelets are not in the same
case (Fig. 3b).

In order to select the best wavelets for this signal class,
we have tested 129 wavelets representing all important fami-
lies: daubechies, symlet, coiflet, biorthogonal,
reverse biorthogonal, meyer, gauss, morlet,
mexican hat, β-splines and shannon. We have ap-
plied them to a set of synthetical signals with three reference
frequencies (Fr = 5, 7.5 and 10 MHz) and two lengths (N =
37500 andN = 75000 samples), which are parameters of
experimental signals.

Two criteria have allowed classifying these wavelets: ac-
curacy of the frequencyFr and computation speed. The
four wavelets that provide best results are:haar, gaus1,
rbio3.1 andgaus4.

We have chosen the waveletgaus1 for the implementation
of the method.
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Fig. 3. The analyzed experimental signal and modulus maximalines of the
continuous wavelet transform for: b) a bad wavelet, c) a goodwavelet.

C. Method extension

In practice, we have very little flexibility on parameters.
Indeed, the observation durationT0 is imposed by physical
characteristics of SAW devices and sampling frequencyFs

(hence the number of samplesN ) is imposed too by the
acquisition system

So, by consideringT0 andN as constants, we know from
(2) that the Fourier transform provides a constant spectral
resolution∆Ff , which is not the case for the wavelet transform
because, as shown in (7), the spectral resolution∆Fw depends
on the reference frequencyFr.

The comparison in terms of performance of the field of use
for both resolutions∆Ff and∆Fw is obtained by analyzing
the intersection point in relationships (2) and (7), and for
which we can write

Fr =

√
4N + 1 + 1

2T0
(8)

Thus, if we have the choice of the resonator frequencyFr,
it is necessary to choose it smaller than the expression value
(8) to obtain a better spectral resolution.

However, ifFr is imposed, we propose to improve∆Fw by
introducing an upsampling factorR leading to the calculation
of intermediates samples and obtained by the spline method
or the Shannon relationship. These new points are used to ar-
tificially increase the sampling frequencyFs. Both techniques
giving the same results, we have chosen the Shannon way.

The results of this technique are presented in Fig. 4 for
two synthetical signals (T0 = 15 µs, Fs = 2.5 GHz, N =
37500 samples): the first withFr = 5 MHz and the second
with Fr = 10 MHz.

Figs. 4a and 4b show that the spectral resolution∆Fw is
independent of the number of periods. SinceFs is fixed,∆Fw
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Fig. 4. Spectral resolution and comparison between wavelets and Fourier for
two synthetical signals (T0 = 15 µs, Fs = 2.5 GHz, N = 37500 samples):
(a) Fr = 5 MHz and (b)Fr = 10 MHz.

is independent ofT0 which is not the case at all of the Fourier
transform. This remark allows us to apply the wavelet-based
method on a small signal lag (5 % to 10 %), the important
thing being to select few periods. These same figures also
show that choosing a low upsampling ratio, spectral resolution
is significantly improved.

The introduction of upsampling provides an additional de-
gree of freedom and allows calculatingR according to the
desired spectral resolution,Fr being fixed or variable. From
(3) and (7) we have

∆Fw = Fr −
1

T0

RN
+ Tr

(9)

and finally,

R =
(Fr −∆Fw)Fr

∆FwFs
(10)

Thus, forFr = 5 MHz andT0 = 15 µs, we get the following
spectral resolutions:

• ∆Ff = 66 kHz by Fourier,
• ∆Fw = 10 kHz by wavelets without upsampling,
• ∆Fw = 2 kHz by wavelets with an upsamplingR = 5.

VI. EXPERIMENTAL RESULTS

We have applied the wavelet-based method on an exper-
imental signal provided by a SAW device (Fig. 3a) and
on synthetical signal, both having the following following
characteristics:Fr = 10.700 MHz, Fs = 2.5 GHz, N =
37500 samples,T0 = 15 µs andp = 8 periods.

The results are presented in Fig. 5. Fig. 5a clearly shows
that values ofFr obtained by wavelets are always within the
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Fig. 5. Resonance frequency measurement for: (a) synthetical signal and
(b) experimental signal withFr = 10.700 MHz, Fs = 2.5 GHz, N =

37500 points,T0 = 15 µs andp = 8 periods.

limits range imposed by the spectral resolution and thus for
R = 40 we get

10669 MHz 6 Fr 6 10701 MHz (11)

with ∆Fw = ±1 kHz while ∆Ff = ±66 kHz.
Fig. 5b shows the same results but with a limit since, beyond

R > 15, values ofFr are false. These values can be explained
by the presence of noise on the experimental signal (Fig. 3a),
unlike the synthetic signal, for which upsampling generates
artifacts in wavelet maxima lines.

VII. C ONCLUSION

In this article, we compared the Fourier transform and the
wavelet transform in the case of SAW resonance frequency
measurement. If the Fourier transform can be envisaged,
wavelet transform possibilities make it an attractive alternative.
Indeed, the wide variety of available wavelet bases allows
reaching a high level of accuracy and a competitive compu-
tation time. We have given necessary conditions of the center
frequencyFr, the number of samplesN and the observation
time T0 to get a better than Fourier spectral resolution. We
also proposed an analytical expression setting the upsampling
parameterR according to the desired spectral resolution.
Finally, the method has been validated on both synthetic and
experimental signals.
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