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The understanding of energy transfer mechanisms in a tokamak edge plasma
is a major challenge for controlled fusion test reactors. High values of the
Hurst exponent (H > 0.5) encountered in experimental probe data acquired
in the scrape-off-layer (SOL) suggest the presence of long-range correlations
favoring the hypothesis of an avalanche-type of radial transport. This com-
munication aims at showing that this high value of Hurst coefficient does not
necessarily imply the existence of long-time range correlations but it can be
the witness of the presence of a particular behavior at small-time scales. In-
deed, the development of a wavelet-based observer on synthetic signals, relying
on fractional Brownian motions, has allowed the realization of a study model
with mixed statistics. The associated time series, for which the H value is
controlled, have been broken into blocks of variable length. Then, these dif-
ferent blocks have been scrambled randomly. Although potential long-range

correlations have been thus destroyed, the wavelet-based estimator applied to
these new synthetic signals is able to measure the original value of the Hurst
parameter on a variable scale range. This approach highlights the persistence
level on the scale range for several H and block size values. This technique
reveals the reminiscent character of the synthetic process behavior appearing
from small-time scales to long-time scales.
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1. Context and motivation

Hot plasmas produced by tokamaks generate high turbulence signals for

which models can be built on fractional Brownian motion (fBm) charac-

terized by the Hurst exponent H . Many estimators of the parameter H

have been proposed.1 Some are based on the estimation of geometrical

parameters (boxes method, mathematical morphology) while others imple-

ment temporal methods (maximum likelihood estimator). There are also

frequential methods (spectral analysis), multi-scale approaches (Burlaga-

Klein, variance) and especially the estimation by wavelet,2 particularly well-

suited to the process in power-law.3 Veitch and Abry4 have also shown their

excellent statistical performance, their unbiased feature, and their very low

variance. One of the key points to ensure maximum efficiency of this esti-

mator is based on the choice of the appropriate wavelet. That is why we

propose a study to find it in the case of the fBm. From this best wavelet

and by using the associated estimator, this communication aims at show-

ing that a high value of Hurst coefficient does not necessarily imply the

existence of long-time range correlations but it can be the witness of the

presence of a particular behavior at small-time scales.

2. Fractional Brownian motion and fractional Gaussian

noise: definition and properties

2.1. Fractional Brownian motion (fBm)

The fBm is a 1/f stochastic process (cf. Fig. 1a) characterized by its Hurst

exponent H (0 < H < 1). It results from the generalization of the classical

Brownian motion (H = 0.5) described by Kolmogorov in 1939 and thor-

oughly studied by Mandelbrot and Ness in 1968.5 It is denoted as BH(t)

and defined by

{BH(t+ δt)−BH(t)} ≡ N
(
0, σ2δt2H

)
with BH(0) = 0. (1)

From Eq. (1), one can easily establish that {BH(t)} ≡ N
(
0, σ2t2H

)
and

thus write that BH(t) is a centred Gaussian process. Its autocovariance

function is expressed by the relation

γBH
(t− t′) =

σ2

2

(
|t|2H + |t′|2H − |t− t′|2H

)
, (2)

which indicates the non-stationary character of fBm process. The mean

of its Wigner-Ville spectrum is SBH
(f) ∼ |f |−(2H+1) and that is the reason

why fBm is a 1/f process.6
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The self-similarity relation of a Gaussian process x(t) is written as

E [(x(at))n] = E
[
anH(x(t))n

]
< +∞, ∀n ∈ N, ∀a > 0. (3)

It is verified for orders n = 1 and n = 2 and is equal to 0 and σ2t2H ,

respectively. As all moments of a Gaussian process can be deduced from

orders n = 1 and n = 2, the two relations which define them are sufficient

to prove that fractional Brownian motion is statistically self-similar.

2.2. Fractional Gaussian noise (fGn)

The fGn, denoted as GH,δt(t), is the fBm increment process (cf. Fig. 1b)

and is defined by

GH,δt(t) =
1

δt
(BH(t+ δt)−BH(t)) . (4)

We have {GH,δt(t)} ≡ N
(
0, σ2δt2(H−1)

)
, which indicates, as for the

fBm case, the centered Gaussian nature of the process. Its autocovariance

function

γGH,δt
(τ) =

σ2

2δt2
(
|τ + δt|2H − 2|τ |2H + |τ − δt|2H

)
(5)

highlights the stationarity property of the fGn process and reveals there-

fore its non self-similar nature. For 0 < H < 0.5, γGH,δt
(τ) converges, and

GH,δt(t) is called short-range correlation process. However, for 0.5 < H < 1,

γGH,δt
(τ) diverges, and GH,δt(t) is called long-range correlation process.

Lastly, H = 0.5 is the non-correlated classical Brownian motion.
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Fig. 1. a) fBm and b) fGn for H = 0.7.



December 12, 2011 21:52 WSPC - Proceedings Trim Size: 9in x 6in CCT11˙Article˙ASPR

4

3. Wavelet-based estimator and 1/f processes

Let x be the process to be analysed, one denotes as dx(j, k) = 〈x, ψj,k〉

detail coefficients of the discrete wavelet decomposition, where {ψj,k(t) =

2−j/2ψ0(2
−jt − k), j ∈ {1, . . . , Nj}} is the basis provided by the mother

wavelet ψ0 and used in multiresolution analysis (MRA). Wavelets associated

to MRA is an effective tool for the study of 1/f processes.

Indeed, if there is a process with a power-law S(ν) ∼ σ2
x|ν|

−α with

σ2
x = 1

πkΓ(α) sin
(α+1)π

2 (Γ : Eulerian integral of the second kind), then its

autocovariance function is γ(τ) ∼ k|τ |−(1−α), with α = 2H + 1. Wavelet

basis is particularly well-suited to highlight the scale invariance property

because it is built on the scale operator itself with

ψj,0(t) = 2−j/2ψ0(2j t), (6)

and

γx(j) = E
[
d2x(j)

]

= 2jασ2
xIα,ψ0

, (7)

where Iα,ψ0
=

〈
|f |−α, |ψ0(f)|2

〉
.

Doubly orthogonal structure of wavelet basis joined to the number of

vanishing moments provides almost uncorrelated coefficients. Because of

this, detail variance calculus with the expression

E
[
d2x(j)

]
=

1

Nj

Nj∑

k=1

d2x(j, k), (8)

(Nj : number of points at scale j) allows having a good estimate of the

slope α.

The existence of this slope α = 2H+1 reflects the self-affinity properties,

which can be also obtained by the power spectral density but with a weak

precision. This is depicted in Fig. 2 and Fig. 3 for a simulated classical

Brownian motion H = 0.5.

The slope α can be obtained by a weighted linear regression in a repre-

sentation xj = log2 2
j = j et yj = log2

(
E
[
d2x(j)

])
where E [yj ] = axj + b.

The weighted linear regression is built on the variance4 σ2
j of the yj with

â =

∑
yj (S0xj − S1) /σ

2
j

S0S2 − S2
1

≡
∑

yjwj (9)

where S0 =
∑ 1

σ2

j

, S1 =
∑ xj

σ2

j

and S2 =
∑ x2

j

σ2

j

, weights wj verify-

ing
∑
wj = 0 and

∑
jwj = 1. This estimator reaches the Cramer-Rao
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Fig. 2. Brownian motion H = 0.5: Hurst parameter from the power spectral density.
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Fig. 3. Brownian motionH = 0.5: Hurst parameter from the discrete wavelet transform.

boundary relative to the estimation of a and therefore is consistent because

lim
N→+∞

Var(â) = 0. It is an interesting alternative to estimators based on

the maximum likelihood principle. Indeed, performances of these estima-

tors deteriorate when received data deviate from the reference model. The

wavelet decomposition of a self-similar stochastic process with stationary

increments, such as fBm, generates a new process which is stationary. In-

deed, if xw(t) = CWT[x(a, t)] where x(t) is a self-similar stochastic process

and CWT the continuous wavelet transform, then its autocovariance func-
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tion is written as

γxw
(τ) = −σ2a2H+1

∫
|u|2Hγψ

(τ
a
− u

)
du, (10)

proving that xw(t) is a stationary process.

The correlation range of a wavelet-based estimator is considerably re-

duced with regard to the initial process x(t). Its origin divergence is pro-

portional to f−α and it is balanced by the behavior of Ψ(f) to |f |m. As

lim
τ→+∞

γxw
(τ) = lim

f→0
Sxw

(f)

∼ τ2(H−M), (11)

the choice of M allows to adjust the correlation decrease and therefore

to accelerate the estimator efficiency.

4. Wavelet choice for the estimation of H

In order to find the best wavelet for the estimation of H , we have used

the algorithm of Meyer and Sellan7 built on discrete wavelet basis and

whose implementation has been discussed by Abry and Sellan.8 We have

generated 30 fBm occurrences of 213 points for each H value and this, for

H ∈ {0.1, 0.2, . . . , 0.9}. We have submitted them to an estimator based on

95 discrete wavelets (DW) and 143 continuous and complex wavelets (CW)

covering thus the main families, like Daubechies (db), symlets (sym), coiflets

(coif), biorthogonal and reverse splines (bior, rbio), Meyer (meyr, dmey),

Gauss (gaus,cgau), Morlet (morl, cmor), mexican hat (mexh), Shannon

(shan) and β-spline with complex frequency (fbsp).

Results presented in Fig. 5 and Fig. 6 show clearly great behavioral

differences between DW and CW. First of all, we note that DW measure

H with a regular precision and they are more accurate when H > 0.5. On

the other hand, CW, which have a random behavior, provide more stable

and precise results when H 6 0.5. However, for H > 0.5, their results are

almost unusable as Fig. 7 confirms it.

In the case of usual families like db, coif and sym, DW demonstrate

high stability whereas CW are stable only for the coif family but with

unsatisfactory measures. By observing more specifically the case of the DW,

we find that families db and sym deviate more and more from the reference

parameter H when the wavelet order increases. This is especially true when

H decreases. Other families dmey, bior and rbio offer a more variable

behaviors. For example, the wavelet bior3.1 provides a systematic bias

which is never encountered in the case of the wavelet bior1.3.
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It is by minimizing quadratic error in the least squares sense that we

have found the best wavelet: db2. It is interesting to note the good adequacy

between the fractal nature of this wavelet and the self-similar nature of an

fBm (see Fig. 4).
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Fig. 4. Wavelet db2: a) scale function φ and b) wavelet function ψ.

Table 1. Estimation of H by DWT for different block sizes and different
areas.

Scales 1 to 3 4 to BS BS+1 to BS+3

block size area 1 area 2 area 3
(BS) lag (fBm) lag (Bma) lag (fGn)b

32 1 H = 0.71 − 23 H∗ = −0.25
64 2 H = 0.71 12 H = 0.48 24 H∗ = −0.26

128 3 H = 0.71 13 H = 0.54 25 H∗ = −0.26
256 4 H = 0.71 14 H = 0.51 26 H∗ = −0.27
512 5 H = 0.71 15 H = 0.49 27 H∗ = −0.28

1024 6 H = 0.71 16 H = 0.49 28 H∗ = −0.31
2048 7 H = 0.71 17 H = 0.49 29 H∗ = −0.33
4096 8 H = 0.71 18 H = 0.50 30 H∗ = −0.40
8192 9 H = 0.71 19 H = 0.48 31 H∗ = −0.37

16384 10 H = 0.72 20 H = 0.49 32 H∗ = −0.35
32768 11 H = 0.72 21 H = 0.50 33 H∗ = −0.27
65536 − 22 H = 0.50 −

Note: a Bm: Brownian motion, bH∗ = H − 1.
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Fig. 5. Estimation of H with discrete wavelets for Href ∈ {0.1, 0.2, . . . , 0.9}.

5. Persistence of H in fBm with mixed statistics

In the next step of this work, we study modified fractional Brownian motion

signals in order to understand the link between a high value of the Hurst

parameter H and long-time correlation.

To this end we have generated an fBm of 220 points with H = 0.7

according to values encountered in different tokamak edge plasmas. Time

series has been broken into blocks of length M , the blocks scrambled ran-

domly and this, for 12 values of M ranging from 25 to 216. This approach
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Fig. 6. Estimation of H with continuous wavelets for Href ∈ {0.1, 0.2, . . . , 0.9}.

provides a simple model of data with mixed statistics.

The scrambled and unscrambled data were then used to calculate H

parameter by using the wavelet-based estimator. The shuffling of blocks of

lengthM should destroy any correlation existing for time scales larger than

M .

Results are depicted in Fig. 8. It shows clearly three areas for all block

sizes :
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• a first one at small-time scales (1-3) where one measures H = 0.71 cor-

responding to the original fBm value H = 0.7 (see area 1 in Table 1),

• a second range varying from ∼ 4 to the scale corresponding to the block

size, where the behavior is the one of the classical Brownian motion

H = 0.5 (see area 2 in Table 1),

• a last range of always three scales (see area 3 in Table 1), beginning at

the block size scale, and where one measures

−0.25 6 HfGn = HfBm − 1 6 −0.40

⇒ 0.60 6 H 6 0.75.

The value of H results of an fGn behavior but not any fGn: the one of the

increments of the fBm signal. This is the indication of the persistence of H

at long-time scales.

6. Conclusion

This study shows that discrete wavelets are good estimators of the Hurst

exponent H and especially the 2-order of Daubechies wavelet. We have
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shown that for different block sizes, and in spite of the shuffling process,

the H value of the original fBm is still present not only at small-time scales,

i.e. smaller than the block size, but also at long-time scales. This kind of

process with mixed statistics seems to exchange its self-similarity, present at

small-time scales for a stationarity at long-time scales and this, by holding

the same value of H . This approach highlights the persistence level on

the scale range for different block size values and reveals the reminiscent

character of the fBm process behavior appearing from small-time scales to

long-time scales. As a result, large value ofH can be measured even without

any long-range correlation and thus does not imply necessarily the existence

of persistency at large time scales. This would put back into question the

picture of a radial transport caused by avalanches at all scales. In order

to confirm these first conclusions, the same work on other values of H is

needed.
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