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cy, Nancy Université, BP 239, F-54506 Van

rance

ail address: pascal.rischette@inet.air.defense.go

e cite this article as: A. Scipioni, e
ession for associated filter coefficien
a b s t r a c t

After showing that Daubechies polynomial coefficients can be simply obtained from

Pascal’s triangle by some elementary additions, we propose a derivation of the spectral

factorization by using the elementary symmetric functions. This derivation leads us to

present an analytic expression, able to compute Daubechies wavelet filter coefficients

from the roots of the associated Daubechies polynomial. Thus, these coefficients are

directly obtained and without recurrence. At last, we measure the quality of the

coefficient sets generated by this expression and we compare it with two well-known

methods.

& 2011 Published by Elsevier B.V.
1. Introduction

During these last 20 years, several founding works
[1–3] led the signal processing research to experience a
growing enthusiasm for the wavelet transform [4], espe-
cially for the compactly supported orthonormal wavelets
and still recently those of Daubechies [5]. Various meth-
ods of parametrization of these wavelets were proposed
[6–11] allowing to obtain wavelet filter coefficients.

The method of Sherlock and Monro [9] starting from
the factorization of Vaidyanathan [6] is efficient but it
clearly appears in equations (5) and (6) of [9] that it is a
recursive technique which cannot directly provide filter
coefficients without calculating all coefficients of all pre-
vious orders. This remark also applies to the method of
Zou and Tewfik [7] and the one of Amaratunga and Strang
(cf. [3, p. 163]). That is the reason why, after computing
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the Daubechies polynomial roots, we propose an expres-
sion which directly computes without recurrence the
coefficients of any order of the corresponding filter. In
that sense we consider our technique as a direct method.

This correspondence is organized in three other parts. In
Section 2, after recalling essential elements of the Daube-
chies polynomials, we note that their coefficients can be
obtained directly from Pascal’s triangle. Section 3 gives a
description of the progress which leads to the literal expres-
sion. Lastly in Section 4, we present a comparison of our own
coefficients by taking two sets of coefficients as reference:
the one of Amaratunga and Strang [12] and other one of
Sherlock [13].

2. Daubechies polynomial coefficients

For all materials in the next two sections the reader
should refer to [14,3]. In the multiscale analysis, we are
concerned with the design of two filters h and g. They
define, respectively, the scale f and wavelet c functions
and the approximation Vj and detail Wj subspaces in L2ðRÞ.
The family of dilates and integer translates cð2�j:þnÞ of
: An origin of Daubechies polynomials and an analytic
11), doi:10.1016/j.sigpro.2011.05.020
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the wavelet function c constitutes an orthonormal basis
of L2ðRÞ.

The discrete Fourier transform of h¼ ðhnÞ0rno2N ,
ĥðoÞ ¼

P2N�1
n ¼ 0 hn e�ino is a 2p-periodic trigonometric

polynomial. The number of vanishing moments imposes
that ĥ has p as a zero of order N, so that it can be
expressed ĥðoÞ ¼ ðð1þe�ioÞ=2ÞNPðoÞ, (cf. Corollary 5.5.4,
[14]) with PðoÞ ¼

PN�1
n ¼ 0 pn e�ino and p0,p1, . . . ,pN�1 2 R.

The orthonormality of the integer translates fð:þnÞ of
the scale function f implies the condition jĥðoÞj2þ
jĥðoþpÞj2 ¼ 2. These two conditions imply that

jPðoÞj2 ¼Q sin2 o
2

� �
, ð1Þ

for some polynomial Q ðyÞ 2 R½y�, and setting y¼ sin2o=2
there exists a unique such polynomial Q(y) of minimal
degree which is the Daubechies polynomial given by (cf.

Proposition 6.1.2. [14])

Q ðyÞ ¼
XN�1

k ¼ 0

2
Nþk�1

k

� �
yk, ð2Þ
Fig. 1. Link between Daubechies coeffici
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for N40, kZ0, ðNþk�1
k Þ ¼ ðNþk�1Þ!=k!ðN�1Þ!. Thus the

Daubechies polynomial coefficients are a0,a1, . . . ,aN�1

with ak ¼ 2ðNþk�1
k Þ. We suggest this quadratic time algo-

rithm for computing the coefficients ak ¼ aN,k, for k¼ 0,
1, . . . ,N�1,

an,k ¼

2 for k¼ 0,

2an,n�1 for k¼ n,

an,k�1þan�1,k for 0okonoN:

8><
>: ð3Þ

The proof is straightforward and done by direct computation.
Fig. 1 shows the link between Pascal’s triangle and the

Daubechies polynomial coefficients. We can observe that
a simple reading of Pascal’s triangle in a diagonal way
directly gives the coefficients of this polynomial, except
for a factor 2.

3. A derivation of the spectral factorization

Once we know jĥðoÞj2, we need to recover ĥðoÞ. Set
z¼ eio, and let PðzÞ9PðoÞ ¼

PN�1
n ¼ 0 pne�ino ¼

PN�1
n ¼ 0 pnz�n,
ents’ triangle and Pascal’s triangle.

: An origin of Daubechies polynomials and an analytic
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where 9 means equal by definition, then zþz�1 ¼ 2�4y

and Q ðzÞ9Q ðyÞ ¼
PN�1

n ¼ 1�N qnzn. The Riesz lemma (cf. [14,
Lemma 6.1.3]) gives a constructive way to produce all
possible P(z) by means of the zeros of Q(z). Condition (1)
extended to the complex plane leads to the Fejér–Riesz
factorization PðzÞPð1=zÞ ¼Q ðzÞ and the set of zeros gk of
Q(z) is preserved under taking the inverse 1=gk or the
complex conjugate gk . All different ways to obtain P(z) are
done by choosing a splitting of the set of zeros of Q(z) into
two parts, such that gk, gk lie on one side and 1=gk, 1=gk lie
on the other side. Moreover, in order to satisfy the
minimal phase criterion, gk is chosen among fgk,1=gkg

such that jgkjr1. From

Q ðzÞ ¼ P2
0

YN�1

k ¼ 1

ðz�gkÞðz
�1�gkÞ, ð4Þ

we determine uniquely PðzÞ ¼ P0
QN�1

k ¼ 1ðz
�1�gkÞ. We com-

pute P0 by deducing from (4) the alternate expression of
Q ðyÞ ¼ P2

0

QN�1
k ¼ 1ðð1�gkÞ

2
þ4gkyÞ and then comparing with

the expression of Q(y) given in Section 2 the terms of
highest degree; we obtain

P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2N�1

N�1

� �
4N�1QN�1

j ¼ 0 gj

vuut : ð5Þ

Finally, using zþz�1 ¼ 2�4y, the z-zeros of Q(z) are
obtained from the roots fykg1rkrN�1 of the Daubechies
polynomial Q(y), by the relation

gk,g�1
k ¼ 1�2yk72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ykðyk�1Þ

p
, ð6Þ

so that their computation provides an explicit expression
of ĥðoÞ.

The transfer function H(z) is given by

HðzÞ ¼
1þz�1

2

� �N

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðFFÞ

first factor

HNðzÞ|fflffl{zfflffl}
ðSFÞ

spectral
factor

where HNðzÞ ¼ PðzÞ ð7Þ

Thus with the above we can express H(z) in a conjunctive

form

1þz�1

2

� �N

, ðFFÞ

HNðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2N�2

N�1

� �
4N�1

s YN�1

j ¼ 1

z�1�gjffiffiffiffigj

p
 !

: ðSFÞ

The introduction of the elementary symmetric func-
tions, related to the N�1 roots g1, . . . ,gN�1 of P(z), given
for all 0o joN by

P
N�1

0


 �
¼ 1 and P

N�1

j


 �
¼

X
1rn1 o ���onj rN�1

gn1
. . . gnj

, ð8Þ

allows us to go further and we can present a disjunctive

form of HN(z)

HNðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2N�2

N�1

� �
4N�1

s
�
XN�1

j ¼ 0

ð�1Þj P
N�1

j


 �
zjþ1�NQN�1
p ¼ 1

ffiffiffiffiffigp

p
0
@

1
A: ð9Þ

By using the binomial formula and by studying the
behavior of the different elements of (9), we can establish
Please cite this article as: A. Scipioni, et al., Pascal’s triangle
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a completely disjunctive form of H(z) and finally propose
the expression which directly provides Daubechies filter
coefficients from Daubechies polynomial roots

HðzÞ ¼
2�ð4N�3Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N�2
N�1

� �q
QN�1

p ¼ 1

ffiffiffiffiffigp

p

�
XN�1

j ¼ 0

Xj

k ¼ 0

ð�1ÞN�1�k N

j�k

� �
P

N�1

N�1�k


 � !
z�j

0
@

þ
X2N�1

j ¼ N

X2N�1�j

k ¼ 0

ð�1Þ1þ jþk N

N�k

� �
P

N�1

2N�1�j�k


 � !
z�j

1
A:
ð10Þ

The coefficient of degree n in the above expression
provides the nth coefficient hn of the filter h where the
elementary symmetric functions ½PN�1

j �, for j¼ 1, . . . ,N�1
can be computed by the following quadratic time algo-
rithm (the proof is straightforward):

P
n

0


 �
¼ 1 if 0rnoN,

P
n

n


 �
¼ gn P

n�1

n�1


 �
if 0onoN,

P
n

j


 �
¼ gn P

n�1

j�1


 �
þ P

n�1

j


 �
if 0o jonoN:

8>>>>>>>><
>>>>>>>>:

ð11Þ

4. Results performance

The programming way of (10) is very important.
Actually, Matlabs software is using the format specified
by the IEEE-754 standard and has a limited and fixed 16-
digit-precision. When the order reaches N¼50 or 100, the
lowest coefficients are, respectively, �5:863� 10�24 and
3:807� 10�34. Since this precision is insufficient for high
orders, we have chosen to use Mathematicas.

We compare our coefficient sets to those of Amara-
tunga and Strang, and those of Sherlock. After transcrip-
tion of their subroutines in Mathematica, respectively
daub.m and makedau.m, we observe three perfect
identical sets to about the 15th digit for a 20-digit-
precision. However, orthonormality conditions need to be
checked properly because they measure the quality of the
analysis basis. Thus, two normalization errors, En1 and En2

defined by

En1 ¼�
ffiffiffi
2
p
þ
X2N�1

i ¼ 0

hðiÞ and En2 ¼�1þ
X2N�1

i ¼ 0

h2ðiÞ ð12Þ

have been computed. Because the behaviors of these two
errors are similar, Fig. 2 presents only one of them. Fig. 3
expresses the orthogonality default E0 according to order N.
This one is measured by computing the mean of the self-
correlation function for each N

Eo ¼
1

N

XN�1

k ¼ 0

X2N�1

i ¼ 0

hðiÞhði�2kÞ: ð13Þ
: An origin of Daubechies polynomials and an analytic
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Fig. 3. Orthogonality default.
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Fig. 4 shows the mean of the approximation conditions
versus order N which is obtained by computing

Ea ¼
1

N

XN�1

k ¼ 0

X2N�1

i ¼ 0

hðiÞð�1Þiik: ð14Þ

These three figures show that En1, E0 and Ea for 1rNr25
of our approach are always smaller than the one of Sherlock’s
way. Even if the best way is the one of Amaratunga and
Strang for NZ10 (Figs. 2 and 3), we can remark on Fig. 4 that
our values of Ea provide the best behavior.

Moreover, we would like to emphasize that the quality
of our method is the best for No10, which are orders
usually used in most cases.

Lastly, for high orders we pay special attention to the
format of numbers: for instance, when N � 20, En1 and E0

of Sherlock begin to be in the same range than the smallest
filter coefficient (Figs. 2 or 3). Consequently, these errors
are no more inconsiderable. So the gain of the analysis
Please cite this article as: A. Scipioni, et al., Pascal’s triangle
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precision obtained by using high orders can be lost by
degrading the basis orthonormality if the digit-precision is
insufficient.
5. Conclusion

We have introduced an analytic expression able to directly
provide the filter coefficients from the Daubechies polyno-
mial roots. Furthermore, we have shown that the Daubechies
polynomial coefficients can be obtained by a fast algorithm
only using elementary additions. We have also proposed an
origin of Daubechies polynomial coefficients in the Pascal’s
triangle. The link between Pascal’s triangle and Daubechies
polynomial coefficients leads to the question of a deeper link
between wavelet theory and number theory similar to the
relation existing between number theory and Fourier trans-
form highlighted by Kahane [15] and Beurling [16].
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