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Abstract

This paper presents two different methods for estimating the diameter of an immersed wire
insonified by an ultrasonic plane wave. The first part of the backscattered echo, called the
quasi-rigid backscattered echo (QRBE), and the quasi-rigid form function (QRFF) are
described first. It is shown that the QRBE contains the size information (diameter) of the
target. In the first method, this size is obtained by associating a pattern recognition procedure
with a spectral correlation. The second method is based on a continuous wavelet analysis of
the QRBE at a particular scale with a judiciously selected wavelet. After a brief description of
the wavelet tool, we present in detail the wavelet-based approach for target sizing. Results thus
obtained are compared with experimental measurements using copper and steel wires. They
show that for the largest diameters, the results are similar. On the other hand, the more the
diameter decreases, the more the wavelet-based estimator is distinguished by giving a better
relative precision. In terms of the cost of calculation, the second method is better since it
requires only one wavelet transform at only one single scale against a Fourier transform and an
iterative correlation procedure, necessary in the first technique.
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1. Introduction and motivation

The problems tackled in this paper are those of the sizing
characterization by ultrasound of a target immersed in a liquid.
This millimetric wire target is insonified by an ultrasonic
broadband transducer, and our goal is to determine its diameter,
by using two different methods which rely on the analysis
of the backscattered echo. A possible application of these
methods is the granulometry of particles in suspension in a
liquid, in particular the measure of the volumetric rate of
suspended solids in wastewater. Existing acoustic methods
are based on the analysis of the attenuation spectrum [1].
However, the main disadvantage for all of these solutions is that
the material of particles must be known. The granulometric
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methods proposed here are based on a backscattered echo
study. Accordingly these could be used in continuous
measures without solution sampling.

The study of the scattering of acoustic waves by a target
has been made by several authors and more particularly
the geometric and elastic waves analysis [2–8]. Resonance
effects in acoustic echoes may be analyzed using the GTD [9]
(geometrical theory of diffraction) or the RST [10] (resonant
scattering theory). The latter, selected in the continuation of
this work, shows that the backscattered echo is made up of
several wave types which are particularly sensitive to the size
and the physical nature of the target.

In preceding works [11], the authors established that the
spectral composition of the first part (duration roughly equal
to that of the incident impulse) of the backscattered echo
produced by the target has the advantage of being strongly
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Figure 1. Nature of the waves crossing a target insonified by an
ultrasonic wave.

dependent on the size of the target and of being only slightly
affected by the nature of the material from which it is made.

The first method of radius estimation is based on the
identification of the optimal parameter which ensures the best
superimposition of the spectral backscattered echo segment on
a function of reference. This method is similar to a technique
of pattern recognition.

The second technique, also without contact, does not rely
directly on the form function but on a family of synthetic
echoes. Those are analyzed by a wavelet transform, more and
more used in industrial applications [12], the coefficients of
which are used as a foundation for the construction of a model,
identifying the experimental signals.

The outline of this paper is as follows: section 2 points
out some essential elements of the resonant scattering theory
(RST) indispensable to a good understanding of the physical
phenomena met. Section 3 presents the spectral method while
section 4 details the time method. In section 5, we give a
comparison of the differences in performance between these
two estimating techniques.

2. Theoretical background

When a medium has acoustic impedance discontinuities
limited in space, a phenomenon of scattering appears. This
scattering results from the combination of various effects
that are the reflection, the refraction and the diffraction of
the ultrasonic waves on a target. An interpretation of these
phenomena may be provided by the RST.

2.1. Quasi-rigid backscattered echo

The RST splits up the incidental wave into a sum of partial
waves with respect to the geometry of the target and is strongly
dependent on the wire’s elastic and structural properties [13,
14]. Thus for a wire target, the incidental wave is broken up
into various types of cylindrical waves as figure 1 shows.

Among the latter, the Franz waves (denoted as F r
i :

where r means rigid and i is the number of turns around the
target) and Sholte–Stoneley waves [15, 16] (crawling waves)
are dependent on the geometry and slightly affected by the
nature of the target. Other waves (Rayleigh and whispering
gallery waves, bulk waves), strongly dependent on acoustical
properties of the immersed wire, compose the elastic part of
the echo.
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Figure 2. Complete and quasi-rigid echo.

Thus, in the ideal case of an infinitely rigid target, the first
part of the echo backscattered by the target is made up only of
the specular echo and the Franz waves.

In practice, we can observe only the Sholte–Stoneley
waves, the Franz waves being too strongly attenuated [17].

On the one hand, for real targets, the more the reduced
wave number ka increases (frequency bandwidth is imposed),
the more the size of the target increases, and the more the
crawling waves are delayed compared to the specular wave.
On the other hand, when ka decreases, the quasi-rigid echo
cannot be extracted properly from the whole echo because the
elastic waves interfere.

The method explained below uses only the first part
of the backscattered echo which contains mainly the radius
information of the wire target. This part of the echo is called the
quasi-rigid backscattered echo (QRBE) [11] and is obtained by
a temporal windowing of duration equal to that of the incident
pulse as shown in figure 2.

2.2. Form function and acoustical transfer function

With the aim of controlling the complexity of the equations
which govern the phenomena of scattering, the material of the
targets to be considered is solid, elastic, homogeneous and
isotropic.

The incidental ultrasonic pressure wave to be considered
is longitudinal, monochromatic, plane and with a wave
vector

−→
k .

The form function, so-called scattering magnitude, results
from the theory of the collisions [18]. It is without unit and
represents the variations of the magnitude of the wave scattered
according to the observation angle θ and to the size a of the
target compared to the wavelength ka (see figure 3). It also
depends on the physical characteristics of the material and is
related to the free modes of vibration [19]. It is denoted by
f (r, θ, ka) when it is given at a distance r and as f∞(θ, ka)

when r → ∞.
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Figure 3. Ultrasonic insonification of a wire.
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Figure 4. Quasi-rigid form function for wires.

In the case of a wire target and for r � a, the acoustic
transfer function, which connects the incidental pressure and
the backscattered pressure, is directly related to the form
function and is expressed by [19]

H(r, π, ka) = Ps(r, π, ka)

Pi(r, π, ka)
=

√
a

2r
f∞(π, ka) e−2ikr , (1)

with

• Ps(r, π, ka) and Pi(r, π, ka) the Fourier transforms of
the backscattered echo and the incident ultrasonic wave,
respectively;

• f∞(π, ka) the backscattered form function of the target;
• a the radius of the wire;
• k the wave number in the ambient medium;
• ka the reduced wave number and
• r the distance from the origin to the field point.

Contrary to the complete form function, there is no
analytical expression of the quasi-rigid form function fqr(ka).
The procedure for the calculation and construction of the quasi-
rigid form function is widely explained in [20].

Figure 4 shows the results for a rigid wire and for wires
made of copper and steel [20].

The good coincidence of the extrema of the quasi-rigid
form functions for wire targets in the interval ka ∈ [0.5, 3]
confirms their slight dependence with respect to the physical
nature of the material (figure 4). These functions are similar
to the functions obtained for a rigid target. This last, denoted
as F(ka), is the reference function we use for estimating the
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Figure 5. Schematic diagram to obtain the normalized quasi-rigid
echo spectrum Fx(f ).

radius of a target in the following parts using the spectral
correlation method.

3. Diameter estimation using a spectral correlation
method

3.1. Principle of the sizing method

The wire for which we estimate the diameter is insonified
by a broadband transducer. Then we calculate the spectrum
of the windowed backscattered echo by a short time Fourier
transform to obtain FT[eqr(t)]. The same operation is done
with the backscattered echo from a block sufficiently wide
to simulate an infinite plane: FT[bqr(t)]. By dividing
these two spectra in the limited bandwidth of the transducer
(fmin < f < fmax), we obtain the normalized quasi-rigid echo
spectrum Fx(f ). Thus, we eliminate the effects of transducer
directivity (and other effects) as well as the attenuation of the
medium [21]. This procedure is summarized by the diagram
in figure 5.

We showed in [11] that by placing the segment Fx(f )

on the reference form function F(ka) we obtain the estimate
of the radius a (denoted as â) of the target. Our transducer
having a finished and constant bandwidth (fmin, fmax), to each
size corresponds an interval in the form function (kminaj

and kmaxaj ). In the next section we present a correlation
method to look for the optimal repositioning of the spectrum
of the normalized backscattered quasi-rigid echo Fx(f ) on the
reference form function F(ka). This optimal repositioning
allows us to estimate the radius of the wire target.

3.2. Spectral correlation method

Estimating the radius a of the wire consists of finding the
optimal size for which the superimposition of the vector Fx(f )

on the form function of reference F(ka) is the best.
The correlative method we present comprises several

steps.

• From the reference form function F(ka), we build a
family of N functions Faj

(f ) for each size, aj ∈
[a0, aN−1] with an incremental step equal to �a.

• We denote by fi (0 � i � M − 1) the discrete
frequencies in the range [fmin, fmax]. This stage leads
to the development of a matrix X (dim M × N ) formed
of the values Faj

(fi), and of a vector column F formed
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Figure 6. Diagram of the correlative method to obtain the best
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segment on the reference function.

of the values Fx(fi), as described below:

X=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0(f0) F1(f0) · · · FaN−1(f0)

F0(f1) F1(f1) · · · FaN−1(f1)
...

...
...

F0(fi) · · · · · · FaN−1(fi)
...

...
...

F0(fM−1) F1(fM−1) · · · FaN−1(fM−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

F =

⎛
⎜⎜⎜⎝

Fx(f0)

Fx(f1)
...

Fx(fM−1)

⎞
⎟⎟⎟⎠. (3)

• We determine the vector Φ of the correlations between
the columns of Xc and the vector F c using the relation

Φ = XT
c · F c, (4)

where Xc is the matrix X centered and reduced by
column, and F c is the vector F centered and reduced.

• Then we choose for the criterion of the best
superimposition the maximum value of the components
of vector Φ.

Figure 6 shows this procedure.

4. Diameter estimation using a wavelet-based
estimator

4.1. Wavelet transform

The capability to provide the frequential composition of a
stationary signal and the possibility of applying linear filtering
operators to it make Fourier transform [22] an essential
tool in signal processing. This decomposition of the signal
is optimal in the sense that the imaginary exponentials of
Fourier constitute a nonredundant analysis basis. However,
the absence of localization of these functions allows only

a global analysis of the signal and discredits this type of
analysis in the sense of the uncertainty of Gabor–Heisenberg
[23, 24]. Indeed, even if the short time Fourier transform
(STFT) provides an undeniable improvement, the regularity
of the time–frequency paving [25–27] which results from it
is not relevant, as shown in figure 7. Moreover, the Fourier
analysis being valid only for stationary signals is very badly
adapted to the study of the transitory phenomena of a signal.
The wavelet transform [28] provides multiple advantages.

• It enables one to approach the lower limit imposed by the
uncertainty principle of Gabor–Heisenberg.

• The analysis basis of the wavelet transform uses functions
perfectly located on the time–frequency plane.

• The great diversity of the functions offers an additional
degree of freedom for the optimization of the number of
coefficients produced by the analysis.

• In most cases, the richest information of a signal is
located in its singularities (irregular structures). Wavelet
transform allows exact analysis of local structures of
the signal at the most relevant observation scale able to
provide the available information.

The wavelet transform breaks up a signal f on a wavelet
family translated (factor b) and dilated (factor a) starting from
a mother wavelet ψ and forms an analysis basis being able to
be orthonormal [29]. It is defined by

W [fa,b] = 1√
a

∫ ∞

−∞
f (t)ψ∗

(
t − b

a

)
dt (5a)

∝ 〈f,ψa,b〉, (5b)

where 〈·, ·〉 means the inner product, ∝ denotes proportional
to and ψ∗ is the complex conjugate of ψ .

It must check the following essential properties.

• ψ ∈ L2(R),∫
R

ψ(t) dt = 0 and
∫

R

‖ψ(t)‖2 dt = 1. (6)

• The functions generated by the mother wavelet ψ are

ψa,b(t) = 1√
a

· ψ

(
t − b

a

)
(7)

and allow an effective paving of the time–frequency plane.
Thus, the operation measures the behavior of f around
the moment b and in a radius proportional to the scale
factor a.

• The mother wavelet ψ is characterized by a number of
vanishing moments m such as

〈tm, ψ(t)〉 =
∫

R

tmψ(t) dt = 0, (8)

which is a decisive element in the description of the
singularities of the signal f since the analysis will be
blind with the polynomials of degree m − 1.

The continuous wavelet transform provides the most
precise analysis on the time–frequency plane but at the price of
a strong redundancy of appreciated information and thus of a
strong cost of calculation [30]. There is an alternative allowing
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Figure 8. Morphological comparison: (a) synthetic quasi-rigid echo
(∅ = 0.5 mm), (b) wavelet of Morlet, (c) wavelet of Gauss of
order 7, (d) wavelet of Daubechies of order 7.

one to optimize the analysis by using wavelets generating
discrete orthonormal bases of L2(R):{

ψj,n(t) = 2
−j

2 ψ(2−j t − n)
}

(j,n)∈Z
2 . (9)

That is how one constitutes a family of multiresolution
approximations [31–33] of the signal f .

Multiresolution analysis (MRA) decomposes f by
orthogonal projections on approximation Vj and detail Wj

spaces [34] and this for all the possible resolutions 2−j . The
lost information between two scales 2j and 2j+1 is entirely
evaluated by the quantity

∑
n〈f,ψj,n〉 · ψj,n.

Two discrete filters h and g facilitate the MRA’s
implementation and satisfy

h[n] = 〈ϕ, ϕ−1,n〉n∈N, (10)

where ϕ is the scaling function at scale j = 0,

g[n] = 〈ψ, ϕ−1,n〉n∈N, (11)

|̂h(ω)|2 = |̂h(ω + π)|2 = 2, with ĥ(0) = 2. (12)

These two filters constitute the quadrature mirror filters (QMF)
and are at the base of Mallat’s algorithm [35] which calculates
the approximation and detail coefficients by

aj+1[p] =
∑
n∈Z

h[n − 2p] · aj [n] = aj ∗ h̃[2p], (13)

dj+1[p] =
∑
n∈Z

g[n − 2p] · aj [n] = aj ∗ g̃[2p]. (14)

4.2. Principle of the sizing method

The morphology of the experimental QRBE, whose
experimentation conditions are described below, reminds one
unequivocally of some wavelets as shown in figure 8. It thus
appeared convenient to us to develop a characterization method
of these signals, and more precisely a technique to estimate the
wire target diameter, based on a wavelet analysis. However,
in view of their great diversity, and as in most applications, the
question of the wavelet choice is essential [36].
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Figure 9. Maxima of the wavelet coefficients versus continuous
scale for a wavelet of (a) Daubechies and (b) Morlet.

4.2.1. Wavelet selection. So as to choose the analyzing
wavelet most appropriate to the characterization of the
backscattered echoes, we undertook a systematic study whose
objective was to find the wavelet which respects the following
criterion.

• Maxima of wavelet coefficients, taken for each echo, and
at a constant relevant scale, must respect a monotony
relation between the diameters, as figure 9(a) shows for
example on scale 4. Besides, we note in figure 9(b) that a
wavelet does not necessarily respect this relation of order
although it is morphologically adapted.

As seen in section 2, the QRBE is made up of the Sholte–
Stoneley waves and the specular wave. The combination of
these waves varies according to the diameter and thus also the
width of the QRBE. That is the reason why it is necessary to
find an constant interval, at the beginning of the backscattered
echo, adapted to any diameter. The selected wavelet is the
one which respects the criterion described above as often as
possible for whatever part of the signal, be it its size or its
position (cf figure 10(a)).

Figure 10(b) synthesizes the results and shows that
two wavelets are distinguishable from others: ‘sym2’ and
‘rbio2.2’, a symlet of second order and a reverse β-spline 5/3

[28]. The first offers good behavior to the small parts of the
signal but deteriorates as soon as the size increases (see figure
10(a)). On the other hand, the second is more robust and less
sensitive to the signal size.

Moreover, it should be noted that the discrete wavelet
transform did not allow finding a wavelet which respects in a
robust way the monotony relation between the diameters and
the wavelet maxima. That is the reason why the continuation of
the method is based on a continuous wavelet transform with the
‘rbio2.2’ wavelet (CWT-rbio2.2). An interesting way would
be to use the synthetic echoes as analysis wavelet. However,
the behavior of this wavelet with regard to essential properties
must be checked such as the time–frequency paving in the
sense of Gabor–Heisenberg. Moreover, the impact of the loss
of other important properties such as the number of vanishing
moments must also be assessed.

4.2.2. Details of the method. As indicated in [11], it
is possible to generate the theoretical backscattered echo
of a wire corresponding to a given diameter, from its
theoretical form function. We use this technique to create
11 synthetic backscattered echoes for diameters d (mm) ∈
{0.10, 0.15, 0.20, 0.25, . . . , 0.6}, which are presented in
figure 11 and which will be used as reference in the
development of the estimator.

For the reasons described in the preceding paragraph, we
must determine the part of the echo on which we will perform
a CWT-rbio2.2. Thus, we must focus on the size and the
position of this part of the echo.

On the size level, we must choose the part of the signal
among all those which respect the monotony relation described
above. For calculation costs and real time application reasons,
we have chosen the shortest of these segments (10%).

With regard to the position of the lag in the signal, we have
chosen the one which is located earliest in the echo (0.5%).
Indeed, the QRBE being isolated from the complete echo
after arbitrary windowing (see figure 2), possible remainders
of elastic waves can more easily disturb the end than the
beginning of this echo.

Then, we perform a CWT-rbio2.2 on this part of the echo,
on each of the 11 synthetic echoes, by using the mirroring
technique [37] aiming to reduce the edge effects, which leads
to figure 12.

From these wavelet decompositions, one notes that all
the maximum coefficients concentrate around scale 4, which
allows one to have the representation of the diameter versus
the maximum of wavelet illustrated in figure 13. Besides, it is
necessary to emphasize here the surprising capacity of some
wavelets to highlight the energy of each echo for only one
single scale.

By minimizing the error in the sense of least-squares of
a polynomial approximation, we obtain the expression of the
model and thus the searched out estimator

d = 100.014c3
m−0.048c2

m+0.181cm−1.291, (15)

where d means diameter and cm is the maximum of the wavelet
coefficient.
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Figure 10. Number of respected monotony relations: (a) for several sizes and positions of the signal lag, (b) cumulated.

5. Comparison of the two methods

5.1. Experimentation

The measurements were carried out in a tank filled with water
at ambient temperature. The experimental setup is shown in
figure 14. The wires are fixed on a plexiglass framework
in the axial beam of an ultrasonic transducer and a block of
aluminum is used to calibrate the system.

The transmitter/receiver is a planar wideband transducer
(−6 dB bandwidth: 0.8–1.4 MHz) with a diameter of 0.95 cm.
Electrical excitation of the transmitter is provided by an
Ultimo 2000 generator which delivers a negative impulse. The
receiver gain can vary between −10 dB and 80 dB, and the
impulse width can be adjusted between 25 ns and 1000 ns.
The ultrasonic echoes are visualized on an oscilloscope
Tektronix TDS 320. The bandwidth of the digital acquisition

system is 100 MHz, and the sampling rate is 20 MS s−1.
The data are next acquired on a computer by an interface
IEEE 488.2. The backscattered echoes for steel and copper
wires of diameter d (mm) ∈ {0.25, 0.50, 1.00} are presented in
figures 15(a) and (b), respectively.

5.2. Diameter estimation by correlative analysis

5.2.1. Tests of good performance. The matrix X is built
starting from the perfect rigid form function shown in figure 4
and the parameters summarized in table 1. To test our method,
we chose for vector F one of the columns of X . Thus we
theoretically verify the possibility of estimating the radius a
of the target.

The result presented corresponds to a test with a wire
of radius 0.5 mm (a90 = 0.5 mm). Figure 16 describes the
evolution of the vectors F and Φ. We have the maximum

7
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0 1 2 3 4 5 6
-1

0

1

2

3

4

5

Continuous scale

M
ax

im
a 

o
f 

w
av

el
et

 c
o

ef
fi

ci
en

ts

diameter d (mm)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
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scale for the wavelet rbio2.2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5

Maxima of wavelet coefficients at scale 4 (c
m
)

D
ia

m
et

er
 (

m
m

)

wavelet-based estimator: d
synthesis echoes

d = 10(0.014.cm
3 - 0.048.cm

2 + 0.181.cm - 1.291)

Mean Square Error:

MSE = 6.08e-006

Figure 13. Construction of the wavelet-based estimator:
distribution of the maxima of the wavelet coefficients for the
synthetic echoes versus diameter, and the representation of the law
existing between the diameter and the wavelet coefficients.

value of the vector components Φ for j = 90 that corresponds
to a good estimation of radius a. However, we have a risk of
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Figure 14. Experimental setup.
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Figure 15. Experimental echoes for diameters (mm)
d ∈ {0.25, 0.50, 1.00} for wires of (a) steel and (b) copper.

Table 1. Parameters of the tests.

Frequency bandwith (kHz) Radii range a (mm)
fmin = 800, fmax = 1400 from 0.05 to 0.75
�f = 6 �a = 5 × 10−3

Discrete frequencies fi (kHz) Discrete radii aj (mm)
fi = 800 + 6i aj = 0.05 + 5 × 10−3j
0 � i � 100 0 � j � 40

ambiguity related to the presence of secondary maximum for
Φj = 0.813 where j = 42.

5.2.2. Influence of a limitation of the bandwidth. For a wire
of radius 0.5 mm, we reduce the bandwidth of the transducer
by 20% (fmin = 860 kHz, fmax = 1340 kHz). Figure 17 shows
the limitation of the spectrum F and its effects on the function
of correlation Φ. The maximum is always obtained for j =
90 but the amplitude of the secondary maximum increases
Φ42 = 0.946. A bandwidth reduction increases the risk of
a bad estimation, in particular when the measured radii are

8
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weak. Thus, we find the theoretical limitations of resolution
imposed by the spectral analysis.

5.2.3. Estimation results of the wire diameter. In these
experiments, we applied our method to estimate three different
wire diameters of steel and copper. Figure 18 represents the
optimal superimposition of the vector F on the quasi-rigid
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Figure 18. Superimposition of the segment on the form function of
a steel wire: (a) a = 0.500 mm, (b) a = 0.250 mm, (c) a =
0.125 mm.

Table 2. Relative precision of the measurements.

Real radius Measured Relative
(mm) Material radius (mm) precision

∅ 0.500 Steel 0.54 8%
Copper 0.56 12%

∅ 0.250 Steel 0.28 12%
Copper 0.28 12%

∅ 0.125 Steel 0.15 24%
Copper 0.16 28%

form function F(ka) for steel wires of various diameters.
The relative precision obtained for copper and steel wires is
summarized in table 2.

The results obtained show that we have good precision for
large radius. However, it deteriorates when the radius is below
0.25 mm. This situation was foreseeable because the segment
F approaches a line and the method of correlation analysis

9
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Table 3. Comparative results of the two methods for steel and copper wires of diameters 0.25, 0.50 and 1.00 mm.

Steel Copper
Reference Computation
diameter (mm) methods SCMa WMb �c SCM WM �

∅ 0.25 Estimated value 0.31 0.23 0.32 0.24
Relative error 24% 8% 16% 28% 4% 24%

∅ 0.50 Estimated value 0.56 0.50 0.56 0.51
Relative error 12% 0% 12% 12% 2% 10%

∅ 1.00 Estimated value 1.08 1.02 1.12 0.92
Relative error 8% 2% 6% 12% 8% 4%

a Spectral correlation method.
b Wavelet method.
c Performance difference: SCM − WM.
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Figure 19. Validation of the wavelet-based estimator for steel and
copper echoes.

is less adapted for the repositioning of this type of curve. A
solution to address this defect would be either to increase the
bandwidth of the transducer, or to complete the correlation
with a least-squares analysis. In addition to the performance,
the correlative method of analysis is totally independent of the
scale factor of the measuring equipment.

5.3. Diameter estimation by wavelet analysis

The method is tested on the same experimental echoes as
the correlative method and represented in figure 15. First of
all, these backscattered echoes are normalized compared to
the synthetic echoes of figure 11. For that, we use a point
of measurement corresponding to d = 0.4 mm aiming at
calculating the ratio of the magnitude differences and thus
placing the echoes of the same diameter (theoretical and
experimental) in the same magnitude range.

Then the mirroring technique is applied to the same
lags of the signal as those selected for the synthetic echoes.
Consequently, we can apply CWT-rbio2.2 and submit to the
estimator the maximum of the coefficients at scale 4.

The results are presented in figure 19, in which we note
that this method allows one to obtain good estimates of various
diameters. Besides, it is interesting to emphasize that the
model can also be applied to a value outside the range which

is used for its development (between 0.1 and 0.6 mm). That is
the case for the estimation of the 1 mm diameter.

5.4. Comparison and discussion

In regard to the principle, the two methods are rather clearly
distinguished from each other: the first approaches the
problem of dimensioning under the spectral angle while the
second is placed under the time angle. However, more attentive
observation shows that the second can be considered as an
evolution of the first. Indeed, in terms of the choice of
the analysis basis as in terms of localization, the wavelet
transform of the second method is an improvement of the
short time Fourier transform implemented in the correlative
method. Moreover, in the two methods, the second phase
of the processing is based on the development of a reference
model. Thus in the first case, the QRBE to be analyzed is
compared with the QRFF and in the second case, the wavelet
maxima are subjected to a model built from the synthetic quasi-
rigid echoes.

The two methods proposed provide good estimations
in terms of precision and table 3 presents the results.
Nevertheless, it is necessary to emphasize the better results of
the wavelet method for all the diameters measured. Moreover,
the relative variation of performance of the two methods
increases when the diameters decrease.

The relative precision of the estimate for the correlative
method varies between 8% and 28%. It tends to deteriorate
when the diameter decreases. An improvement of the precision
for the small diameters is possible by increasing the central
frequency of the transducer, but at the price of a reduction of
the possible diameter range (ka < 3.5).

In the case of the wavelet-based estimator, the relative
precision is rather stable. It varies from 0% to 8% and does
not seem to be sensitive to the reference diameter value.

6. Conclusion

Various applications, like granulometry for instance, require
one to characterize particles immersed in a liquid. Here
we propose two methods for estimating the target diameter
belonging to the class of metals and based on the analysis
of the backscattered ultrasonic echo. If the two methods
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use the quasi-rigid part of the experimental echo, they are
characterized by two different approaches: one is articulated
around a spectral correlation in connection with the QRFF,
while the other exploits the time domain by a wavelet analysis
associated with synthetic quasi-rigid echoes. Besides, we
emphasize that this second approach is completely innovative
since it is the first time that wavelets are used in this kind of
application.

Experimental measurements showed that for the class of
metals (i.e. with a high acoustic impedance) and for ka < 3.5,
the QRBE spectrum is slightly sensitive to the nature of
the material but strongly dependent on its diameter. This
property allows the QRFF to become the reference to a spectral
correlation. The estimate of the target diameter is obtained
by finding the optimal superimposition between the QRFF
and the QRBE spectrum of the wire to be measured. The
second method is based on the morphological likeness between
the QRBE and the used wavelets. It is remarkable to note
that there exists, for a group of particular wavelets, a single
scale containing the wavelet maxima relating to the diameters
and respecting a monotony relation between them. It is this
property, applied to synthetic quasi-rigid echoes, which allows
the construction of a model of reference and which is the
foundation of the wavelet-based estimator. In this case, the
diameter estimate is obtained by subjecting to this model
the wavelet maxima calculated on the QRBE of the wire to
be measured.

If, in comparison with the other contactless methods of
small target sizing, the two methods offer good-quality results,
the wavelet-based method brings a decisive performance gain,
particularly in terms of the calculation cost and especially in
terms of result precision. We compared the two methods on
steel and copper wires, with diameters ranging from 0.25 mm
to 1 mm. With the correlative method, results deteriorate for
small diameters. On the other hand, with the wavelet method
the relative precision remains constant and always lower than
8% over the whole measuring range. Complementary studies
are in hand and aim at extending the methods to other materials
belonging to the same class and for a more significant number
of targets covering a wider range of sizes. These methods of
measurement can also be extended to spherical targets.
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